ループ伝達関数手法による外乱推定型サーボ系の設計

A Design of Servosystem Using Disturbance via LTR Technique

○ 岩瀬教昭（東北大）正 石原正（東北大）正 椎岡光（東北大）
Noriaki IWASE, Tohoku University, 01 Aramaki aza Aoba, Aoba-ku, Sendai, Japan
Tadaoshi ISHIHARA, Tohoku University
Hikaru INOOKA, Tohoku University

Key Words: disturbance estimators, integral controllers, filtering type Kalman filter, Loop Transfer Recovery.

1 略言
積分型サーボ系の一設計方法として、外乱オプサーバーを利用した設計法がある。最近、この構成法の有効性を示す研究が多数報告されているが、この構成法による加速可能なフィードバック特性やその統制的達成方法に関する研究は十分には行われていない。

出力フィードバック制御系において、所望のフィードバック特性を実現するための系統的設計法としてループ伝達関数手法（LTR手法）が知られている。この手法は、通常のLQG制御の他に、完全安定を検出するためのLQG制御の他にも適用可能である。しかし、外乱推定器を用いた積分型サーボ系の構成では、可安定性が満たされなければならない必要があるため、従来のLTR手法を直接適用することができない。

本論文では、ループ伝達関数回復による、外乱推定器を用いた積分型サーボ系の設計について考察する。LTRの目的特性として、制御対象の実質的特性を測定可能な場合に外乱推定器を用いて達成可能なフィードバック特性を採用する。この目標特性を出力フィードバックで回復する段階として、推定系に対する外乱的合成も重視する様に組み入れた制御系を構成し、LQGの設計を行う場合、状態間数を用いるループ伝達関数を用いるよりも良い性能をもつよう設計を行うのである。本論文でも状態間数の分類表現を用いることにする。

2 問題設定
制御対象は次のような状態空間モデルで記述されるものとする。

\[
\begin{align*}
\dot{x}(t) &= A x(t) + B u(t) + d(t) \\
y(t) &= C x(t)
\end{align*}
\]

ここで、\(x(t) \in \mathbb{R}^n\) は状態ベクトル、\(u(t) \in \mathbb{R}^p\) は操作量、\(y(t) \in \mathbb{R}^p\) は出力ベクトルであり、\(d(t) \in \mathbb{R}^p\) は制御対象入力側に加わるステップ外乱ベクトルである。

このような、外乱信号と制御対象からなる次のような状態方程式を構成する。

\[
\begin{align*}
\xi(t) &= \Phi \xi(t) + \Gamma u(t) \\
y(t) &= H \xi(t)
\end{align*}
\]

ここで、\(\xi(t) = [x(t)' \; d(t)']'\) と定義する。

\[
\Phi = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}, \quad \Gamma = \begin{bmatrix} B \\ 0 \end{bmatrix}, \quad H = \begin{bmatrix} C \\ 0 \end{bmatrix}
\]

本研究では、(1) 式で表わされた制御対象に対して、外乱推定器を用いた出力フィードバックサーボ系のLTR手法による設計について考察する。明らかに、(2) 式は可安定とはならないため、通常のLTR手法を形式的に適用することはできない。

以下 (1) 式のモデルは次の条件を満たすものとする。

(C1) \((A, B, C)\) は最小実現である。
(C2) 行列 \(CB\) は正則行列である。
(C3) 伝達関数行列 \(C(sI-A)^{-1}B\) は \(s = 0\) で零を持たない。

上の条件のもと、拡大系の可観測性に関する次の定理が示される。

補題 1 上の推定値が存在するとき、(2) 式で与えられる拡大系は可観測である。

上の補題は拡大系に対してオプサーバーを構成できることを示している。ここでのようなオプサーバーを用いることにすると、

\[
\xi(t) = (\Phi - K_f H) \xi(t) + \Gamma u(t) + K_f y(t)
\]

ここで、\(\xi(t)\) が拡大系の状態ベクトル \(\xi(t)\) の推定値であり制御対象の状態推定値 \(\xi(t)\) と外乱の推定値 \(d(t)\) と用いて次のようにあらわされる。

\[
\xi(t) = [x(t) - d(t)]' \]

また \(K_f\) はオプサーバーゲイン行列であり、(6) 式の分割に対応して次のように解析する。

\[
K_f = [K_f]' K_f
\]

このとき、(5) 式から得られる推定値を用いて外乱を相殺する操作量を与え次のように与える。

\[
u(t) = -F \xi(t) - d(t) + T(s) r(t)
\]

ここで、\(F\) は適当な状態フィードバックゲイン行列、\(T(s)\) は目標入力、\(T(s)\) は適当な前置補償要素である。この構成を Fig.1に示す。

図 1: Structure of the servosystem

(5)，(8) 式から、出力フィードバックの場合のコントローラの伝達関数に関して次のごとことが求められる。

補題 2 (5)，(8) 式で与えられたコントローラの入力 \(y(t)\) から出力 \(u(t)\) までの伝達関数行列は次のように与えられる。

\[
C_s = -(I + \Psi s[I - (\Phi - K_f H)]^{-1})^{-1} \\
\times [I - (\Phi - K_f H)]^{-1} K_f
\]

ここで、

\[
\Psi = \begin{bmatrix} F & I \end{bmatrix}
\]
4 Riccati 方程式の漸近解を利用してLTR

ここでは、拡大系に対する確率モデルを構成し、kalmanフィルタをオブザーバーとして用いたLTR手法を提案する。拡大系の確率モデルは次のように与えられる。

\[
\begin{aligned}
\xi(t) &= \Phi(t) + \Gamma u(t) + \Omega w(t) \\
y(t) &= H\xi(t) + v(t)
\end{aligned}
\]

(18)

ここで、確率外乱 \(w(t) \) および観測ノイズ \(v(t) \) は互いに独立な零平均白応験値であり、その共分散行列はそれぞれ \(W, V \) で与えられるものとする。また、(18) 式における行列 \(\Omega \) はつきのように与えられる。

\[
\Omega = \begin{bmatrix}
\Sigma_k & \Sigma_{kw} \\
\Sigma_{wk} & \Sigma_w
\end{bmatrix}
\]

(19)

ここで、行列 \(\Sigma_k \) は次で、Riccati方程式の非負定解である。

\[
\Phi + \Phi' + \Sigma_k R + \Omega' Q \Omega = 0
\]

(20)

このとき、(\(\Phi, \Omega Q^2, \))が可制御かつ(\(H, \Phi \))が可観測ならば(21)式が唯一定解を持ち、次の補題では、(\(\Phi, \Omega Q^2, \))の可制御性を示す。

補題 5

外乱の共分散行列を \(W = \sigma I \) とする。このとき、(\(\Phi, \Omega Q^2, \))は可制御である。（証明略）

補題 6

確率外乱 \(w(t) \) から出力 \(y(t) \) までの伝達関数行列は次のように与えられる。

\[
G_{yw}(s) = s e^{-1} [(sI - K \Sigma_k)] B(sI + K \Sigma_k)
\]

(22)

以上の結果から、kalmanフィルタゲイン行列の漸近値を用いたLTRに関する次表が得られる。

補題 5 仮定 1 から仮定 3 及び、仮定 4 が成り立つとする。18)式の確率モデルの共分散行列を \(Q = \sigma I, R = I \) のように選ぶ。このとき次の関係式が得られる。

\[
\lim_{s \to \infty} \Sigma(s) = \Sigma_{\text{AF}}(s)
\]

(23)

(証明) 補題 1, 補題 5 により(\(\Phi, \Omega Q^2, \))は最小実現となる。また、条件 3, 4 のもとは、補題 6 および(18)式で与えられた確率モードの \(w(t) \) から \(y(t) \) までの伝達関数行列は最小位相となることが分かれる。

これらの結果と Riccati 方程式の漸近解の結果から[]、

\[
\lim_{s \to \infty} K = \sigma^2 \Omega (\sigma \to \infty)
\]

(24)

式 (24) の結果と(7)式の分解より、(10)、(11) 式を解くと(10)式は(15)式に漸近していることがわかる。□

5 終わりに

LTR手法による外乱オブザーバーを用いた積分型サーボ系の設計法を提案した。外乱オブザーバーゲイン \(K \) を決定し、(19)式のように \(\Omega \) をすることにより、拡大系確率システムは可制御性を満たすため、LTR手法によりサーボ系を設計できた。

参考文献

