共析鋼伸絞線の腐食環境疲労挙動
Fatigue Strength of Eutectoid Steel Wire in some Corrosive environment.

〇藤野 契 (岩手大院)、正佐藤 正 (岩手大)、正片桐 一宗 (岩手大)、正笠場孝一 (岩手大)、正田代 均 (新日鐵釜石)、正兒玉順一 (新日鐵釜石)
H. FUJINO, T. SATO, K. KATAGIRI, K. KASABA, H. TASHIRO, J. KODAMA
Iwate univ., Morioka 020-8551, Nippon Steel Corporation, Kamaishi 026-8567
Key Words : Eutectoid Steel Wire, Corrosive Environment, Fatigue Strength

1. 緒 言
ワイヤーロープ用素線や自動車用ラジアルタイヤおよび高圧ホース等のゴム補強用スチールコードとして機械・土木・船舶などの各工業分野で広く使用されている共析鋼極線は、表面で高強度を有している。それ故に、その需要は年々増加の傾向にあり、またその使用環境も多種多様となって著しくも増大している。

このように工業用材料として重要な位置を占めている共析鋼極線は、今後ますますその需要が高まると共に、疲労はもっとより各種の腐食性環境・摩耗などに対してより優れた特性を兼ね備えていることが必要不可欠となってくる。しかしながら、共析鋼極線を含む高強度材料は、使用頻度が高い割にその腐食疲労挙動や耐環境特性が十分解明されておらず、腐食疲労破壊の適切な防止対策はまだ確立されていない。したがって、腐食環境下で共析鋼極線の疲労試験を行い、より多くのデータを蓄積する必要がある。

本研究では、共析鋼極線の疲労強度に対する環境の影響に着目し、これらが疲労強度および疲労環境に及ぼす影響を明確にすることを目的とする。

2. 供試材および実験方法

2.1 供試材
本研究で使用した供試材はJIS SWR82Aに準じた共析鋼極線で、その化学組成をTable 1に、機械的特性をTable 2に示す。試験片は丸棒圧延材に熱処理と伸線加工を数回繰返して伸線された線径0.3mmの極線である。伸線加工ひずみは、伸線加工最終熟処理線径d₀、仕上がり線径dとするとε＝2ln(d₀/d)で表される。

2.2 疲労試験および試験環境
共析線の疲労強度に及ぼす環境の影響を検討するため、ハンター式回転曲げ疲労試験機を用いて疲労試験を行なった。疲労試験の環境条件は、相対湿度 (RH)％以下、(低湿度) 50士5％ (中湿度)、70％以上 (高湿度)の大気中、0.1％NaClおよび1％NaCl水溶液中、蒸留水中、水素イオン濃度(pH)を調整したpH7.2, 7.10, 12水溶液中である。

疲労試験は、各材料の曲率部を溶液に浸漬させた状態で行なった。室温および溶波温度は20±2℃、繰返し速度は大気中において3000c/m、溶液中で1000c/mに制御した。また、

<table>
<thead>
<tr>
<th>Table 1 Chemical compositions [Wt%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel sort</td>
</tr>
<tr>
<td>SWR82A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2 Mechanical properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
</tr>
<tr>
<td>2.51</td>
</tr>
<tr>
<td>3.54</td>
</tr>
</tbody>
</table>

U.T.S.：引張強さ R.A：経り (断面収縮率)

本研究の疲労限は応力繰返し数1×10⁷で破断しない繰返し曲げ応力とする。

3. 実験結果および考察

3.1 相対湿度の影響
伸線加工ひずみ 2.5について、低湿度、中湿度および高湿度における大気中、蒸留水中での疲労試験により得られたS-N曲線をFig.1に示す。

高湿度、蒸留水中では、S-N曲線に水平な部分が現れ、本実験の応力振幅負荷領域においては疲労限が確認されなかった。高湿度大気中においては、大気中の温度が金属面で凝結して水膜となり、腐食を起こすものと考えられる。金属材料を水溶液中に浸漬すると表面の電極差に起因するアノード部とカソード部を形成し局部電池作用により腐食が進行する。水溶液による腐食においては、水に浸漬試験に比べ酸素の拡散速度が速いため金属腐食のカソード反応が促進される。そのため腐食も促進すると考えられ 1)，環境の影響が大きい低応力振幅領域で、高湿度が蒸留水中よりもやや低い疲労強度を示すものと考えられる。

アノード反応：Fe→Fe²⁺+2e⁻
カソード反応：2H⁺+2e⁻→H₂ (酸性域)
:O₂+4H⁺+4e⁻→2H₂O (中性域)

また、低湿度から中湿度への変化と中湿度から高湿度への変化において、疲労強度の低下は明らかに後者の場合において顕著である。これは、水分による腐食の速度が急速に増加し始める相対湿度である臨界湿度RHₐが考えられ、鉄材料に関し、各RHₐ60％であるとされている 2)。したがって、その前後で疲労強度に及ぼす湿度の影響が大きく異なり、相対湿度が60％を超える高湿度では水分による疲労強度の低下が著しいため疲労限が消失し、低湿度および中湿度では疲
労限に差が現れなかったものと考えられる。

3.2 NaCl 濃度の影響

伸線加工ひずみ 2.5 について 0.1% NaCl および 1% NaCl 水溶液中、蒸留水中での疲労試験により得られた S-N 曲線を Fig.2 に示す。

NaCl 水溶液中においては、塩素イオン（Cl⁻）が存在するので、電気的中性を保つために金属塩（FeCl₂）を形成する。この金属塩が加水分解され塩酸を生じ、これが溶液中の塩素イオン濃度（pH）が低下し、腐食が進行しやすくなり、腐食の進展が促進され疲労限が消失するものと考えられる。

Fe²⁺ + 2Cl⁻ → FeCl₂

FeCl₂ + 2H₂O → Fe(OH)₂ + 2HCl

しかしながら、NaCl 濃度差による S-N 曲線の変化はあまり認められない。これより本実験における応力振幅の範囲において、ある NaCl 濃度以上では疲労強度に影響を及ぼさないと考えられる。本実験においては破断した試験片に大規模な腐食痕などは観察されず、腐食作用は主にき裂先端で露出した新生面に作用するものと考えられる。したがって、その作用領域は非常に狭く、腐食促進に使われる Cl⁻は微量であると考えられる。よって、溶液中に大量の Cl⁻が存在していたとしても、それらは全て腐食に作用するわけではなく NaCl 濃度の臨界値が存在し、本実験においてこの値はそう大きくはないものと考えられる。

3.3 水素イオン濃度（pH）の影響

pH7,10,12 と調整した水溶液中において、伸線加工ひずみ 3.5 の S-N 曲線を Fig.3 に示す。

pH7,10 において pH の依存性はみられないが、pH12 においては S-N 曲線に水平な部分が現れ、割れ感受性が小さくなる。pH2 においては pH12 ほどではないが、pH7,10 と比較し、低応力振幅域において疲労強度がやや増大する傾向がある。前述した局部電池作用のため腐食が進行し、pH2 の酸性域においては水素イオンの還元反応がカソード反応に加わり、中性域より腐食速度は増し、線径が大きくなり減少する。線径が減少すると疲労強度が増すことが報告されるが、そのため破断線返し数が増加すると考えられる。pH12 ではアノード部における鉄の不動態化が生じ、腐食速度が減少し破断線返し数が増加すると考えられる。

4. 結 言

共析鋼極細線に対して、腐食環境中および大气中の各環境下で疲労試験を行い、疲労強度に及ぼす環境の影響について検討した結果、以下のように要約される。

(1) 低湿度および中湿度では湿度による疲労限の差はほとんど現れず、高湿度での疲労限は応力振幅 300MPa まで低下し、疲労限は本実験では確定できなかった。

(2) 0.1～1% の NaCl 濃度における水溶液中の疲労強度とはほとんど差異がなく、本実験での負荷応力振幅域では疲労限が確認できない。

(3) pH2 の水溶液中では中性域よりも少しに疲労強度が増加し、pH12 の水溶液中では腐食速度が減少して高い疲労強度を示した。

参考文献
1) 小若正倫，金属の腐食損傷と防食技術，(1983)，p4, p47-62
2) 伊藤俊郎，腐食科学と防食技術，(1969)，p298, コロナ社
3) 仮下真司，他 3 名，神戸製鋼技報，第 50 巻，(2000)，p61-64