傾斜機能材料からなる変厚回転円板の熱応力緩和最適設計
Optimal Design for Relaxation of Thermal Stress in a Rotating Disk of Variable Thickness
Compose of Functionally graded Materials

○正 千葉 良一（宮城高専） 正 糸野 良弘（岩手大）
Ryoichi Chiba, Miyagi National College of Technology, Nodayama48, Medeshimasiote, Natori
Yoshio Sugano, Iwate University, 4-3-5, Ueda, Morioka

Key words: Thermal Stress Relaxation, Optimal Material Design, Functionally Graded Material, Variable Thickness Rotating Disk, Genetic Algorithm

1. 緒 言
工業用に使われている回転円板は、軽量化や応力緩和のため、従来から変厚板として設計されている。本研究では、さらなる軽量化、熱応力緩和、高強度化を実現する目的で、半径方向に任意の不均質特性を有する傾斜機能材料(FGM)で作製された変厚円板が、軸対称加熱を受ける場合の温度および熱応力の解析解を導出し、いくつかの組成材料の組み合わせとその半径方向の最適組成分布を適当なアルゴリズム(PSO)で探索する方法を提案する。温度場の解析において、回転円板の表面の熱伝達率の変化を考慮した解析解を導出する。

2. 解 析
2.1 熱伝達率分布を有する変厚FGM回転円板の温度解析
円板の両表面の熱伝達率が半径方向に任意に変化する薄い変厚FGM円板の非定常温度場が満足すべき微分方程式は変数係数の2階線形微分方程式であり、厳密解を得ることはほとんど不可能である。本研究ではこれを解析的に解くため、図1のように回転円板を半径方向に有限個の領域に分割し、連続的な熱伝達率をと、熱伝達係数を、密度を、比熱を、板厚を、の変化を個々の領域において相異な一定値で近似することにより、一様な複合領域の熱伝導問題として解析する。
円板の初期温度を、半径方向の循環列の周囲媒体温度をと、半径方向の温度場が得られたとき、外半径に、単位時間に、単位体積あたりの熱発生量を与える。第の領域の温度関数をとすると、の変化は次のように定式化される。

\[T_i(r) = T_{i,0}(r) + \int_0^r \frac{dT_i}{dr} dr \] (1)

\[T_{i,0}(r) = \frac{1}{4\pi} \int_{r_i}^r T_{i,0}(r') 2\pi r' dr' \] (2)

\[T_i(r) = T_{i,0}(r) + \int_{r_i}^r \frac{dT_i}{dr} dr \] (3)

\[T_{i,0}(r) = \frac{1}{4\pi} \int_{r_i}^r T_{i,0}(r') 2\pi r' dr' \] (4)

\[T_i(r) = T_{i,0}(r) + \int_{r_i}^r \frac{dT_i}{dr} dr \] (5)

ただし、

\[T_i(r) = T_{i,0}(r) + \int_{r_i}^r \frac{dT_i}{dr} dr \] (6)

\[T_{i,0}(r) = \frac{1}{4\pi} \int_{r_i}^r T_{i,0}(r') 2\pi r' dr' \] (7)

\[\sigma_{nj} = 0 \] (8)

\[P_j(t) = -\theta_{nj}(t) \] (9)

\[\theta_{nj}(t) = \int_0^t \theta_{nj}(\tau) d\tau \] (10)

\[T_{i,0}(r) = \frac{1}{4\pi} \int_{r_i}^r T_{i,0}(r') 2\pi r' dr' \] (11)

\[\sigma_{nj} = 0 \] (12)

\[\theta_{nj}(t) = \int_0^t \theta_{nj}(\tau) d\tau \] (13)

Fig.1 Analytical model for a FGM rotating disk with arbitrarily varying thickness

2.2 熱応力解析 軸対称非定常温度場を受ける薄いFGM変厚中空円板の熱応力問題の解析解を導出する。半径方向変位を表示した変位方程式により、ポアソン比を一定値と仮定した場合、次式を得る。

\[U_{r,i} + f_i(r) \frac{d^2}{dr^2} U_{r,i} + g_i(r) U_{r,i} = f_i(r) \frac{d^2}{dr^2} U_{r,i} + g_i(r) U_{r,i} = 0 \] (14)

\[f_i(r) = f_i(1/h, 1/h) + 1 \] (15)

\[g_i(r) = g_i(1/h, 1/h) + 1 \] (16)

\[\theta_{nj}(t) = \int_0^t \theta_{nj}(\tau) d\tau \] (17)

\[P_j(t) = -\theta_{nj}(t) \] (18)

\[\theta_{nj}(t) = \int_0^t \theta_{nj}(\tau) d\tau \] (19)

\[T_{i,0}(r) = \frac{1}{4\pi} \int_{r_i}^r T_{i,0}(r') 2\pi r' dr' \] (20)

\[\sigma_{nj} = 0 \] (21)

\[\theta_{nj}(t) = \int_0^t \theta_{nj}(\tau) d\tau \] (22)

\[P_j(t) = -\theta_{nj}(t) \] (23)

\[\theta_{nj}(t) = \int_0^t \theta_{nj}(\tau) d\tau \] (24)
\[\sigma_m = \sqrt{J_2} \] ただし、軸対称平面応力問題の \(J_2 \) は次式で与えられる。

\[J_2 = (\sigma_m - \sigma_{\text{ref}})^2 + \sigma_{\text{ref}}^2 + \sigma_{\text{ref}}^2 / 6 \]

3. 傾斜組成分布の最適化

本研究では、生物の進化過程を模擬した最適化手法である GA を用いて、傾斜組成分布の最適化を行う。中空円板を半径方向に10個の領域に分割し、各領域の体積分率を変数とし、2進数法として6ビットでコーディングする。評価値を \(F = 1/f_{\text{max}} \) とし、 \(f_{\text{max}} \) は評価関数の最大値とする。ただし、評価関数 \(f \) は相当応力 \(\sigma_m \) とした。本研究で用いた GA の仕様を表1にまとめる。終了判定の条件は、べき乗スケーリングの係数が10になり、かつ10世代進化を繰り返しても最良な評価値が変化しなかった場合とした。

<table>
<thead>
<tr>
<th>Table 1 Specifications of GA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of bit strings</td>
</tr>
<tr>
<td>Population size</td>
</tr>
<tr>
<td>Selection</td>
</tr>
<tr>
<td>Crossover / Probability</td>
</tr>
<tr>
<td>Mutation / Probability</td>
</tr>
<tr>
<td>Scaling</td>
</tr>
</tbody>
</table>

4. 数値計算と考察

次の無次元量を導入する。

\[\zeta = r/r_a, \tau = \theta/r_a, \bar{T}(\zeta, \tau) = T(r, \theta)/T_s, \bar{Q} = Qr^2/T_s \lambda_0 \]

\[\bar{b}_1 = b_1/r_a, \bar{a}_1 = a_1/r_a, \bar{a}_2 = a_2/r_a, \bar{b}_3 = b_3/r_a, \lambda_0 = \text{基準温度} \]

ここで、 \(b_1, b_2 \) はビオ数であり、 \(T_s \) はある基準温度である。また、内外側面の周囲媒質温度は零とした。

数値計算結言として次の値を採用する。

\[T_0 = 0, b_3 = 0.1, b_2 = 1, r_a/r_c = 0.1, r_3/a_2 = 0.73 \]

円板構成材料としては铸造アルミウム合金とアルミニウムを採用し、物性値を表2に示す。

<table>
<thead>
<tr>
<th>Table 2 Material properties of Al Alloy and Al₂O₃ (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al Alloy</td>
</tr>
<tr>
<td>Thermal conductivity (W/m·K)</td>
</tr>
<tr>
<td>Young's Modulus (GPa)</td>
</tr>
<tr>
<td>Coefficient of Linear Thermal Expansion (x10⁻⁶/K)</td>
</tr>
<tr>
<td>Density (kg/m³)</td>
</tr>
<tr>
<td>Specific Heat (kJ/kg·K)</td>
</tr>
</tbody>
</table>

図2の板厚変化様式(a),(b)それぞれに対応している。等厚、変厚どちらの場合も加熱部でアルミニウムの体積分率が急激に高くなっており、傾斜機能材というよりも張り合わせ材に近い。この体積分率を持つ場合、両者の円板の重量を比較すると、等厚円板(a)に比べ変厚円板(b)の方が約52%軽い。また、図示していないが、内半径上で発生する半径変化は最大応力値の値も変厚材料(b)のほうが約40%小さい。

図4は図3のような組成分布をもつ場合の熱応力による定常状態の相対応力分布である。降伏応力の比較的小さいアルミ合金部（内半径側）において、変厚円板のほうが約17〜50%相当応力値が小さく、材料の降伏に起因して座屈することが報告されているディスクプレート(3)などの設計に、(b)のような半径方向に減少する板厚変化を持ち、熱発生部をアルミなどのセラミックで熱的、機械的に強化した円板が有効であると言える。

図3は変化する空による相対応力の最大値が最小となるように最適化した結果得られた組成分布であり、