偏心軸を有する回転円板内部き裂の応力拡大係数

Stress-Intensity Factor for Internal Cracks of Rotating Disk with Eccentric Shaft

〇学 松崎 立(芝浦工大院) 正 江角 務(芝浦工大)

Ryu MATSUZAKI, Graduate School of Engineering, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-ku, Tokyo
Tsutomu EZUMI, Shibaura Institute of Technology

Key Words: Rotating Disk, Stress-Intensity Factor, Photoelasticity, Caustics, Stress freezing

1. 結 言

航空機や鉄道に代表される交通機関において、高速性と信頼性の両立は必須である。しかし、エンジンや台車に多用されている回転部の、き裂進展破壊に起因した事故例は依然散見される。き裂発生の一因として、遠心負荷が介在物等の材質不均一部に繰り返し作用して生じる、疲労が挙げられる。稼働時の摩耗や製造誤差で回転不均合となり振動すれば、き裂進展に及ぼす影響は甚大である。

以上を鑑み、本研究では高速回転体を円板モデルで再現し、回転実験を行った。き裂進展問題を応力拡大係数で論じるにあたり、光弾性法とコースティックス法を併用して算定精度の向上を図った。回転円板内部き裂における応力拡大係数の理論解析や実験解釈は文献に見られるが、本報告では回転中心の偏心距離を新評価基準として用いた。

2. 試験片

光弾性法とコースティックス法の実験に求められる物性に優れたポリカーボネート板を供試材に用い、図1に準じて機械加工する。円板中心に、負荷装置回転軸締結用の円孔を設ける。直径80mmの同心円上に、き裂(2a=20mm)を等間隔に8箇所(き裂番号1から8)挿入する。回転中心と円板中心の偏心量x=0.1,2,mmとする。

Fig. 1 Specimen configuration with a magnified crack view and crack numbers

3. 実験方法

本実験では応力凍結法を用いて、高温時のモデルに発生した遠心力場を常温下で近似的に再現する。電気炉内でモデル円板を回転させながら、ポリカーボネートの二次移温速度である155℃まで加熱する。その後3.5℃C/hの温度勾配により室温まで徐冷し、凍結完了に24時間要する。回転数は実験を通して1400rpmの定常回転である。

4. 応力拡大係数の算定

応力拡大係数の算定精度向上を目的に、光弾性法とコースティックス法を併用して比較した。図2に示した、開口モード応力拡大係数Kの算定法を以下に示す。

4·1 光弾性法

き裂への応力集中により等方等体であるポリカーボネートの分子配向が変化し、一時的に異方性を呈す。この異方性を凍結させたき裂部に偏光を入射させると、複屈折によりすべきの変化した透過光が互いに干渉し、等色線と呼ばれる画像模様を示す。等色線を測定し、式(1)よりKを求めた。

\[K_1 = \frac{N_m\sqrt{2\pi n}}{\alpha r_m} \left(\sin \theta_m + 2A \cos \theta_m \right)^2 + A^2 \sin^2 \theta_m \] \((1) \)

ここで、N_m: しま次数、r_m: き裂先端からN_m次の等色線までの距離、\(\alpha \): 光弾性度、\(r_m \): 試験片厚さ、\(\theta_m \): に対し等色線しかし最も張り出す角度である。

4·2 コースティックス法

き裂先端への応力集中により、応力凍結後の試験片では屈折率が変化する。き裂部に平行光を入射させると、屈折した透過光がスクリーン上にコースティックス像を形成する。この像を測定し、式(2)よりKを求めた。

\[K_1 = \frac{N\sqrt{D}}{2\pi \theta_0^2} \left(\frac{1}{\theta_0^2} \right) \left(\frac{D}{\delta} \right)^{3/2} \] \((2) \)

ここで、\(\theta_0 \): 試験片とスクリーン間距離、\(\theta_0 \): 光学定数、\(\lambda \): 光学倍率、\(D \): コースティックス像直径、\(\delta \): 材料定数である。

5. 実験結果

一例として偏心量x=2mm時の試験片写真を示す。図2(a)は両手法から得たき裂部全体像、図3、4はそれぞれ光弾性法、コースティックス法によるき裂部拡大像である。
Fig. 3 Isochromatics on each crack (x=2mm)

Fig. 4 Caustic images on each crack (x=2mm)

図3、4とも、き裂右側が外周側、左側が中心側である。またループとコースティック像は外周側に大きく、中心側に小さく現れた。図5で両手法を用いて求めたKI値を比較し、傾向の一一致を見た。光弾性法で求めたKI値と、偏心距離の関係を図6に示す。

光弾性法で結果を求めるKI値は良い一致を示した。これによって、図5と図7(a)に示すように、直図増しの大きさき裂番号1、2、6の方向に大きなKI値が現れたことが示された。この無偏心円板に発生した直図変化は、微小な加工誤差や回転軸の振れ回り、あるいは材質不均一が、直図増しの凍結過程で増幅される影響と思われる。さらに図6で示すき裂番号3と7で、本来x=1mmのKI値に比べて大きいはずのx=2mmの値が小さく現れた。これは図7(b), (c)に示すように、このき裂位置におけるx=1mmの直図増しが大きいゆえと予想される。このようにx=1mmでは偏心方向と直図方向に伸びたため、偏心量が伸びに吸収される結果となった。凍結過程の温度サイクルと定常回転数を調整して直図変動を抑制すれば、偏心量の増加に伴いKI値も増加する傾向は、より顕著になると思われる。

7. 結言

本研究では、偏心回転軸と内部き裂を有する円板モデルの定常回転応力凍結実験を行い、光弾性法とコースティック法を併用して開口モード応力拡大係数KIと偏心量の関係を調べた結果、以下の知見が得られた。

(1) KI値は外周側き裂で大きく現れたが、中心側き裂ではほとんど見られない。

(2) 両手法の正確な適用により、KI値算定精度が向上する。

(3) 微小な加工誤差や材質不均一が偏心量や直図により増幅され、応力凍結後の直図変化に影響する。

(4) 直図が増加した位置のき裂で、大きなKI値を示す。

(5) 凍結後の直図変動を抑える温度サイクルと、定常回転数を用いる必要がある。

(6) 偏心量の増加に伴い、KI値も増加する傾向がある。

文献

(1) 石川誠．任意の位置に開口き裂を持つ回転円板の応力拡大係数．機論，47-414，A(1981)，229-234。

(2) 中村保雄・高橋誠，回転応力の不均一性にによる応力拡大係数の解析．機論，64-621，A(1998)，1268-1272。

(3) 松崎立・江野穂，不均一負荷と内部き裂を有する回転体の応力拡大係数．日本非破壊検査秋季大会講演概要集，(2006)，79-80。