界面活性剤を添加した LiBr 水溶液の表面張力特性
—溶液温度の影響—

表面張力に及ぼす影響

Kiyoshi OGAWA, Nihon university, Tokusada, Tamura-machi, Koriyama
Naoe SASAKI, Sumitomo light metal co. minatoku. Nagoya

Key words surface tension, surfactant, absorber, absorption refrigerating machine

1. 緒 言
近年、人々は快適な居住空間を求めるようになり、電気冷蔵庫やエアコンは欠かせないものとなっている。これらの機器にはフロンが用いられ地球環境に悪影響を及ぼすため自然冷媒へと変更が進められている。

一方、化石燃料の燃焼ガスによる環境問題も重要性を増し、京都議定書により削減を強いられている。さらに、電力消費量は増加の一途をたどり、今や夏場・冬場に電力消費のピークを生じ、電力負荷平準化対策は欠かせない問題となっている。

これらの観点から、コピューターやヒートポンプが、また省エネルギーでフロンであることが吸収冷凍機が注目され、最近では高効率化の吸収冷凍機が開発された。

現在、実用化されている吸収冷凍機の作動流体として、主に水一エタノール水溶液（以下 LiBr水溶液）と低温を得るためのアンモニア水の組み合わせが用いられる。これらの機器の性能向上を図るために吸収器内などの伝熱管表面に大伝熱面を設ける。また、冷媒蒸気あるいは LiBr水溶液に界面活性剤を添加し、冷媒の吸収促進を図る研究などが報告されている。

LiBr水溶液に界面活性剤を一定量添加した場合、その表面張力が LiBrの濃度の増加によって低下が著しい。また、溶液温度の上昇による表面張力の増加が大きいほど冷媒の吸収にとって好ましいとされている。しかし任意の温度における表面張力特性の報告例はあるが、溶液温度の影響による詳細な報告は数少ないようと思われる。

よって、本研究では炭素数が異なるアルコール系界面活性剤を添加し、水溶液の温度上昇が表面張力に及ぼす影響について測定を行ったので報告する。

2. 実験装置及び方法

本研究では溶液温度を所定の温度に保つことができる恒温槽ジャケットを備えた Wilhelmy 法による全自動型表面張力計（協和界面 CBVP-2, ±0.2mN/m）により溶液の表面張力の測定を行った。

表1 Surfactants using surface tension measurement

<table>
<thead>
<tr>
<th>Surfactant</th>
<th>Chemical formula</th>
<th>Solubility in water at 298K (mass%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-hexanol</td>
<td>C6H12O</td>
<td>0.60</td>
</tr>
<tr>
<td>2-ethyl-1-buranol</td>
<td>C8H18O</td>
<td>1.00</td>
</tr>
<tr>
<td>2-methyl-pentanol</td>
<td>C10H20O</td>
<td>0.81</td>
</tr>
<tr>
<td>1-heptanol</td>
<td>C7H16O</td>
<td>0.174</td>
</tr>
<tr>
<td>1-octanol</td>
<td>C8H18O</td>
<td>0.054</td>
</tr>
<tr>
<td>2-ethyl-1-hexanol</td>
<td>C10H22O</td>
<td>0.01</td>
</tr>
</tbody>
</table>

表面張力測定には、まず界面活性剤をガラス製（約 φ 58mm）シャーレにマイクロビペットで滴下し、その重量を電子天秤（メトーター・トレド、AG285、最小表示 0.01mg）で計量し、さらに 50wt%の LiBr水溶液を加え重量を計測した。所定の濃度の界面活性剤水溶液を用いた。その後、その溶液をマグネティックスターラーおよび超音波により攪拌し、先ほど述べた表面張力計内のシャケットに設置する。さらにシャーレの周囲に電気接続した覆ぎ温度が安定し一定になったならば測定を開始する。測定に使用した洗浄水は毎回洗浄と赤熱処理を行った。なお、上述の試料の温度計測中、溶液攪拌中ならびに溶液温度が所定の温度となるまで間、シャーレの上部をパラフィルムで密閉した。また、溶液温度測定には、あらかじめ白金抵抗温度計（ASL社 F2500、本体温度±0.01℃）と比較校正した電熱温度計を用いた。

3. 測定結果
Fig.1 には、例として 25℃で蒸留水ならびに濃度の異なる LiBr水溶液に1-hexanolを添加したときの表面張力特性的測定結果を示す。そのときの表面張力は、添加された界面活性剤濃度の増加とともに減少し、また、
ある濃度以上に添加しても表面張力の減少は見られず一定となる結果を得た。すなわち飽和濃度となることが示された。また、その表面張力低下は溶液濃度によっても異なる結果を得た。その他の界面活性剤についても同様な傾向が示されたが、界面活性剤の炭素数の増加により飽和濃度は、より低濃度側へと移行する傾向が示された。

Fig. 2 から 4 は、代表として 1-hexanol、1-heptanolならびに 1-octanol を添加した 50wt%LiBr 水溶液の表面張力の温度特性の測定結果を示したものである。測定温度範囲は 25℃から 45℃である。LiBr 水溶液のみの表面張力は温度上昇とともに減少する。しかし界面活性剤が添加された水溶液の表面張力は増加し、また、その上昇は界面活性剤の濃度あるいは界面活性剤の種類によって異なる結果が得られた。

Fig. 5 のグラフは、縦軸に 25℃における表面張力 σ_{25℃}に対する 45℃における表面張力 σ_{45℃}との比 σ_{45℃}/σ_{25℃}で、横軸には界面活性剤濃度で測定結果を示したものである。それらの比はある界面活性剤濃度でピークとなった後、再び減少することが示され、その大きさは 1-octanol、1-heptanol ならびに 2-ethyl-1-hexanol の順となっていることが示された。このような傾向が示されたのは、溶液温度上昇に伴い各界面活性剤の水溶液への溶解度が異なったためであると考えられる。また、それぞれピークとなる界面活性剤の添加濃度は、先の 25℃の表面張力特性の結果より、ほぼ飽和濃度前後であることが分かった。

4 まとめ
50wt%LiBr 水溶液に界面活性剤を添加し、水溶液の温度を変化させ表面張力を測定した結果、以下の結果を得た。

1）界面活性剤を添加した LiBr 水溶液は、温度上昇とともに表面張力は増加するが、その増加は界面活性剤の種類と添加濃度により異なる。

2）表面張力の増加比 σ_{45℃}/σ_{25℃}が最大になる添加濃度は飽和濃度前後であった。

参考文献
1）小川、佐々木、日本大学工学部紀要、No. 2.Vol.47 (2006)73-77
3）高ほか、日本冷凍空調学会論文集、No.1, Vol.22, (2005) 83-93