ディーゼル HEV の走行シミュレーション
～パラレル方式における燃費改善のための制御手法の検討～

Driving Simulation of Diesel-HEV Vehicles
～The Control Strategy for Minimizing Fuel Consumption in Parallel Hybrid System～

○ 陳 柳（早大院） 落合 和樹（早大院） 正 草鹿 仁（早大）
正 大塚 泰弘（早大） 正 紙屋 雄史（早大）

Liu CHEN, Kazuki OCHIAI, Jin KUSAKA, Yasuhiro DAISHO, Yusi KAMIYA,
Waseda University, Okubo3-4-1, Shinjuku-ku, Tokyo

Key words : Parallel HEV, Fuel consumption, Simulation, Optimization, load distribution

1. まえがき
近年、ハイブリッド自動車が注目されている。本研究では
車両全体の効率向上を目指し、乗用車用ディーゼル HEV の
走行シミュレーションを実施した。シミュレーションモデル
はMATLAB/Simulinkを用いて構築し、パラレル方式の
対策の場合はParallel方式とした。計算モデルでは、車速から消費エ
ネルギーを逆算するバックワードシミュレーションの方法を採用し、JO8モードにおいて燃費の向上、バッテリ
の充電放電、エネルギーの再生を考慮しながらシミュレーションで
明らかにするためと仮定した。表1は、Parallel HEV駆
動時の各運転条件における動力源（エンジン、モーター）の
ON・OFFの状態を表している。特に一つの運転条件において
て、エンジン、モータの双方を切り替え得る場合がある。二つ
の動力源の最適な負荷分担の決定が必要である。本研究では
Parallel方式のHEVの制御において、車両全体の効率向上
とする、エンジンとモータの合理的な負荷分担制御を明らか
にすることを目的とした。具体的には、変化する要求トルク
が駆動装置の場合は、走行を制限かつ最大効率で動力源の組み
合わせを探索する。また、要求トルクが再生装置の場合は、SOC
レベルを考慮して、再生の可能性を判断し、モータ、バッテリ
が許容できる最大電力まで再生することとした。0

Table1 Possible driving mode on different conditions

<table>
<thead>
<tr>
<th>運転条件</th>
<th>選択可能な動力源</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_D<T_m, AND Ne<Ne_min</td>
<td>En(+) M(0)</td>
</tr>
<tr>
<td>SOC=SOCmin</td>
<td>O</td>
</tr>
<tr>
<td>SOCmin<SOC=SOCmax</td>
<td>O</td>
</tr>
<tr>
<td>SOC=SOCmax</td>
<td>O</td>
</tr>
<tr>
<td>SOC>SOCmax</td>
<td>X</td>
</tr>
<tr>
<td>T_m_max>T_D</td>
<td>X</td>
</tr>
</tbody>
</table>

(0：選択可能な状態 ×：選択不可能な状態)

ただし
T_D：要求トルク(N•m)
En(+): エンジン駆動 M(0): モータ駆動
M(): モータ制御 SOC: 充電効率(SOCmin: 最小充電率、SOCmax: 最大充電率)
Ne: 要求回転速度(rpm)
Ne_min: エンジン最低回転速度(rpm)

2. 制御方法

2.1. 制御の対象
Fig. 1は本制御の対象であるParallel方式のHEVの
バートレインを示している。Parallel方式は、内燃機関を
主な駆動源として用い、モータで駆動アシストと回生を行う。も
またバッテリーに蓄えられたエネルギーでモータの駆動を行
う。

Fig. 1 Parallel HEV Powertrain

2.2. 最適化アルゴリズム

前述のとおり本研究ではParallel HEVの効率を最適化制
御の判断基準として設定した。車両効率はエンジン効率、パ
ッテリ充電効率、モータ効率、発電効率によって決定され
る。表2は各種運転状態における車両の効率η0を示している。可
能な駆動モードにおいて車両全体の効率の高いモード
を優先的に選択する。また各効率について、発電効率とバッテリ
充電効率はそれぞれに0.9と0.85一定と仮定した。エン
ジンとモータの効率は、回転数とトルクの二次元マップ形式を用
いる。ここで、エンジンとモータの効率は、回転数
とトルクの二次元マップで計算するため、負荷分担はそれ
ぞれの効率に影響することに注目を要する。車両の要求トル
クを満たす上で、エンジンとモータ負荷を最適に分担され
ば、車両全体の効率向上が期待できる。そこで、最適な負荷
分担率についての検討が必要である。

Table2 Parallel HEV efficiency on different driving mode

<table>
<thead>
<tr>
<th>運転モード</th>
<th>効率η</th>
</tr>
</thead>
<tbody>
<tr>
<td>En(+) M(0)</td>
<td>η = T_D / Te</td>
</tr>
<tr>
<td>En(+) M(0)</td>
<td>η = T_D / Te</td>
</tr>
<tr>
<td>En(+) M(0)</td>
<td>η = T_D / Te</td>
</tr>
<tr>
<td>En(+) M(0)</td>
<td>η = T_D / Te</td>
</tr>
</tbody>
</table>

η:車両全体の効率 ηe:エンジン効率 ηm:モータ効率
ηr:伝達効率 ηb:バッテリー充電効率 ηr:回生効率

2.3. 最適な負荷分担率の選択方法
最適な負荷分担率を求めため、繰り返し計算(3)を行う。
図2は最適な負荷分担率を選択するフローチャートを示す。

表1のとおり、例えば、JCO8におけるある時刻の運転条件において、エンジン、モータの双方が選択し得る場合がある。可能性のあるすべての状態に対して、以下の流れで最適負荷分担率を決定する。まず、初期エンジンとモータトルクにより初期車両駆動力ηを算出する。そして要求トルクT_Dとモータ出力（T_m_min<T_m<T_m_max）で決定されるエンジントルク範囲ΔTにおいてエンジントルクをΔT=ΔT/N（N:分割数100）の配で変化させるで新しく車両駆動力ηを計算する。計算結果と初期車両駆動力ηを比較し、より高い車両駆動力とそれに負荷分担率を保存する。次に設定された力でエンジントルクを図2のとおり変化させ、繰り返し計算を行うことで、最終車両駆動力ηとそのときの負荷分担率を抽出することが可能である。以上の計算をJCO8モデルにおける各時刻で実施することで、各時刻における最適な負荷分担率を決定する。

3. Parallel HEVの走行シミュレーション

3.1. シミュレーション車両モデル

本研究のモデルは乗用車を想定し、車両のパラメータを設定した。車両の構成は表3に示す。

Table 3 Input parameters to Parallel HEV Model

<table>
<thead>
<tr>
<th>項目</th>
<th>単位/値</th>
<th>4,850/1,820/1,425</th>
</tr>
</thead>
<tbody>
<tr>
<td>車両重量</td>
<td>kg</td>
<td>2050</td>
</tr>
<tr>
<td>ギア数</td>
<td></td>
<td>5(MT)</td>
</tr>
<tr>
<td>PT総伝達効率</td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>エンジンタイプ</td>
<td></td>
<td>Diesel直列4気筒</td>
</tr>
<tr>
<td>排気量</td>
<td>L</td>
<td>2.2</td>
</tr>
<tr>
<td>最高出力</td>
<td>kW (rpm)</td>
<td>130 (3600)</td>
</tr>
<tr>
<td>最大トルク</td>
<td>N·m</td>
<td>400 (2000-2400)</td>
</tr>
<tr>
<td>モータタイプ</td>
<td></td>
<td>永久磁石式同期型</td>
</tr>
<tr>
<td>定格トルク</td>
<td>N·m</td>
<td>200</td>
</tr>
<tr>
<td>定格回転数</td>
<td>rpm</td>
<td>700</td>
</tr>
<tr>
<td>最高回転数</td>
<td>rpm</td>
<td>4000</td>
</tr>
<tr>
<td>バッテリタイプ</td>
<td></td>
<td>リチウムイオン</td>
</tr>
<tr>
<td>バッテリ容量</td>
<td>Ah</td>
<td>30</td>
</tr>
<tr>
<td>SOC使用率</td>
<td>%</td>
<td>55-65</td>
</tr>
</tbody>
</table>

3.2. シミュレーションの結果

Parallel HEVモデルでは車両から消費エネルギーを逆算する方法を採用し、JCO8モデルにおいて走行シミュレーションを行った結果を図3-5に示す。

図3は、JCO8モデルにおいてParallel HEV速度、総ギア比の変化、車両要求トルクおよびエンジンの状態が表されている。エンジンONの状態は駆動態の49％を占める。

図4はParallel HEVとICEVの燃料消費量の分布を示した。Parallel HEV燃料消費量の低減効果が明確に示されている。

図5はSOCの状態とバッテリーの充電電流の変化を示している。SOCは55％～65％の間に収まった。ところがSOC低く回生エネルギーを利用できない場合、エンジンの負荷増加、バッテリーを急速充電し、それに対し、図4のParallel HEV燃料消費量が増加する傾向がある。

4. 結論

Parallel HEVの車両全体の効率向上を目指し、最適な負荷分担率の制御を行った結果、燃費は18.3 km/Lとなり、ICEVの燃費12.6 km/Lに対し30.8％の改善が得られた(図6)。また、全体の電力消費エネルギーは2075kJ (34.06％)なる一方、1110kJ (74.61％)のエネルギーが回生利用された。これで計算対象としたParallel HEVとICEVに比べ、車両重量が19％重いParallel HEV2とICEVについてはも計算を行った結果、燃費はそれぞれに15.8kJ/kと11.5kJ/Lとなりディーゼルパラレルハイブリッド方式の有効性が認められた。

参考文献

(1) 島村 和明, 森本 義治, 「HEVの燃料消費性能の構造に及ぼす影響」, 自動車技術会論文集, vol. 36, No5, September 2005
(3) 稲垣善寛, 「知識進化学論的計算手法」, 人工知能学会, 2005