往復すべりにおける歯科用マウスガードの摩擦摩耗に関する研究

Friction and wear of dental mouth-guard in reciprocating-motion sliding

○学 原 豪優（八戸高専 専攻科）正 赤垣 友治（八戸高専）非 吉田 悦子（吉田歯科）

Takero HARA, Hachinohe National College of Technology, 16-1 Uwanotai, Tamonoki, Hachinohe, Aomori
Tomoharu AKAGAKI, Hachinohe National College of Technology, Etsuko YOSHIDA (Yoshida Dental Office)

Key Words: Tribology, Mouthguard, Reciprocating sliding

1. 結言

歯転がはブラシシュームと呼ばれる菌の一種で、長期化すると歯や歯茎に負担がかかり総合療法を促進するために使用されているのがマウスガードである。マウスガードは歯と歯の間で緩衝材として用いられるが、摩擦を生じる幾つかで容易に穴が開いてしまい、高頻度での交換が必要となり非経済的で患者の経済的負担が大きい。

このような背景から耐摩耗性に優れた歯科用のマウスガードの開発が求められている。本研究では往復運動を試験片を用いてマウスガード材料の摩擦・摩耗を解明し、マウスガードの耐摩擦性向上のための対策を検討することを目的として実験を行った。

2. 実験装置及び方法

本研究で使用した往復運動摩耗試験機の概要図をFig.1に示す。テーブルポスにプレート試験片を固定し、荷重を負荷した上部試験片をプレート試験片に接触させた状態で、テーブルを往復運動することにより摩耗を発生させる機構となっている。上部試験片の変位を接触形変位センサで、摩耗時に発生する力をロードセルで計測する。

Table 1 Test materials

<table>
<thead>
<tr>
<th>Materials</th>
<th>Upper specimen</th>
<th>Lower specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUS304 Ball (6H0)</td>
<td>Ethylene Vinyl Acetate (EVA)</td>
<td></td>
</tr>
<tr>
<td>Thickness: 2mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Experimental conditions

<table>
<thead>
<tr>
<th>Stroke</th>
<th>5mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle</td>
<td>39.1c.p.m</td>
</tr>
<tr>
<td>Sliding speed (max)</td>
<td>10.23mm/s</td>
</tr>
<tr>
<td>Load</td>
<td>24.04, 75.14, 118.1N</td>
</tr>
<tr>
<td>Test duration</td>
<td>120min</td>
</tr>
</tbody>
</table>

Table 2 Experimental conditions

<table>
<thead>
<tr>
<th>Lubrication methods and lubricants</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Without water</td>
</tr>
<tr>
<td>(2) With water</td>
</tr>
<tr>
<td>(3) With water (front side)</td>
</tr>
<tr>
<td>(4) With water (back side)</td>
</tr>
<tr>
<td>(5) With vegetable oils (front side)</td>
</tr>
<tr>
<td>- Olive oil</td>
</tr>
<tr>
<td>- Rape seed oil</td>
</tr>
<tr>
<td>- Sesame oil</td>
</tr>
</tbody>
</table>

3. 実験結果及び考察

3.1 潤滑方法による比較

荷重 75.14N で行った実験の潤滑方法別の摩擦損失、最大変位の関係をFig.2. Fig.3に示す。荷重 75.14N の場合に最大変位を測定した場合、摩擦損失量は実験開始から約 15.1 で一定、最大変位は約 0.8mm となった。これらの値は表面を滑済した場合の値とほぼ等しく、表面のみの滑済で摩耗を低減させることができた。一方、裏面のみを滑済した場合、実験開始から 40分付近まで、摩擦損失、変位ともに無潤滑の場合とほぼ同じ結果となり、最終的に摩擦損失は約 11.1 で一定、最大変位は約 1.6mm となった。無潤滑の場合は穴が発生したのでに対して、裏面のみの滑済した場合は穴の発生を防ぐことができた。しかし、摩擦損失、変位ともに高価となり、あまり摩擦・摩耗を低減させることができなかった。

荷重 24.07N, 118.1N における表面のみを滑済した場合の摩擦係数、最大変位は、75.14N の場合と同様に、表面を滑済した場合の値とほぼ等しかった。裏面のみを滑済した場合、24.07N では摩擦・摩耗を低減させることができなかった。裏面のみを滑済した場合、118.1 N では摩擦・摩耗を低減させることができた。この理由として以下のことが考えられる。荷重重下では、プレート試験片表面とボール試験片との間に強い摩擦力が生じ、摩擦を相対的にすることができる。
きなくなり、一体となって動く。その結果、テーブルとプレート試験片裏面が摩擦することになるが、この面には蒸留水が存在するため摩擦係数は低くなる。一方、低荷重下では、プレート試験片裏面とボール試験片との間で相対すベリが起こるが、この面には蒸留水は存在しないため、摩擦係数が高くなり、摩耗量も多くなる。

3.2 潤滑剤による比較

前述の結果より、潤滑・摩耗の低減のためには、プレート試験片裏面に潤滑作用を有する物質を塗布することが最も有効であると考え、人体に無害である植物油を潤滑剤としてプレート試験片裏面に塗布し、実験を行った。荷重75.14Nで、表面のみを潤滑した実験の潤滑剤別の時間と摩擦係数の関係を図4に示す。蒸留水で潤滑した場合、摩擦係数は約0.1で一定となったのに対して、植物油で潤滑した場合は、約0.045-0.055で一定となった。この実験で最も摩擦係数が低かったのはオリーブオイルを使用した場合であるが、単に塗布した場合他の植物油より多くするために得られた結果である可能性がある。毎回同じ量を塗布できるよう仕組みや、各植物油の成分等を分析することが今後必要であると考えられる。

4. 結言

(1) プレート試験片の表面のみを潤滑した場合、全面を潤滑した場合と等の効果が得られ、摩擦・摩耗を著しく低減させることが可能であった。
(2) 植物油を潤滑剤としてプレート試験片裏面に塗布するとき、摩擦・摩耗の低減効果は水よりも更に向上した。

参考文献

(1) 志村、八戸高専卒業論文 (2010)。
(2) 原、八戸高専卒業論文 (2011)。
(3) 関、池田他、日露保存誌、49-1 (2006) 6-16。