近年、ローブや近辺などの一次元弹性構造体の波動吸収制御の研究が注目されている。著者らも波動吸収制御の実用的な優位性を示すため、ローブの境界近傍で適用できる波動吸収制御手法を提案してきた(4)、そこで、系を差分近似し、境界条件の影響を受けない内部節点運動方程式から求められる波動伝播解が境界問題の影響を受ける境界条件において満足する補償制御を行うことにより、境界条件が内部条件と力学的に等価な状態を実現し、見えな境界を消去させた。すなわち、無限構造物が実現することを示した。さらに、既報(5)においては、手法の汎用性を示すため、はり適用することを試み、周波数応答を示した。しかし、時間応答を求める計算方法、実用的にも利用できる制御アルゴリズム、が見出せず、制御則として提案するに至らなかった。本報では、はりの波動制御時応答を計算するためのアルゴリズムとして、無理関数を含む制御伝達関数のラプラス逆変換とその量込み積分による計算が実現可能であることを示し、その有効性をシミュレーションにより検証する。さらに、はりにおける波動吸収現象を論じている。
畳み込む積分係数を実数化する目的では、cは任意の実数でよいが、波動制御の基本が波動伝搬の吸収であり、波動伝搬解である式(6)の第2は時刻2πの数で）、実数の変数を実数化する条件を与えることにによって、解を式(6)として取り、ここで、cは任意定数である。

\[z_n(t) = \sum_{i=n}^{\infty} h(t-i)z_i(t) \quad (i = n, n+1) \quad (9) \]

を満たす畳み込み積分係数を用いる。節点変位は実数であるため実数域の畳み込み積分でなければ実時間の制御に使えない。そこで、一般解を式(8)の一次数式で表現する場合に時間領域で実数化する条件を与えることにによって、解を次式(10)として取り、ここで、cは任意実数である。

\[Z_n(s) = c \left[\gamma_n(s) + \gamma_n(s) \right] Z_n(s) \equiv c \gamma_n(s) Z_n(s) \quad (10) \]

畳み込み積分係数を実数化する目的ではcは任意の実数値でよいが、波動制御の基本が波動伝搬の吸収であり、波動伝搬解である式(8)の第2式は時刻2πの数で実数の変数を実数化する条件として意味を持つので、その場合との連続性からcの値を0.5と置く。このように置くことの妥当性は数値計算により確認する。

次に、単純支持顕域での具体的な制御則を右境界端を例に示す。単純支持顕域では、変位モーメント0の条件から、Z_n=-Z_nとなり、節点n-1とnに対する運動方程式が式(11)となる。

\[\begin{array}{l}
Z_n = 4Z_n - 2Z_n + (6 + 2)Z_n + 4Z_n = 0 \\
Z_{n-1} = 4Z_{n-1} - 2Z_{n-1} + (6 + 2)Z_{n-1} + 4Z_{n-1} = 0
\end{array} \quad (11) \]

この境界条件の影響を除くため、次式下限部を解

\[Z_n(s) = c \gamma_n(s) Z_n(s) \quad (12) \]

3. 数値計算

前章で求めた制御則を周波数領域で確認する。

図2に、両端単純支持100自由度差分モデルの右境界端で制御した場合を示す。節点37を加振した場合の加振節点の応答で、進行波成分の応答を吸収する場合を理想数として実時間制御可能な波動伝搬解の制御特性を示している。

図2よりc=0.5の場合（C制御）が理想数からこのずれが最も少ない値であることがわかる。

図2は5次固定振動数での制御モードである。

図4に両側境界で進行波制御およびc制御を行なった場合の制御モードを示す。制御特性を鮮明にするために左右対称モードの5次固定振動数で加振した場合の応答である。進行波制御応答のスペクトル中央部にピークファームが観察される。これが実際の波動制御の影響を明確に見られる。同図でもc=0.5の圧縮が最も進行波制御応答に近いことが分かるが、制御応答で見ればc=0.6の圧縮の方が性能がよいが、両端の制御節点変位を抑えるため、時間軸応答計算では発散しやすい。

c=0.6では制御節点変位はさらに抑制されるがスペクトル内変位は増大する。一方、c<0.5では制御節点変位も増大しスペクトル内変位も増大する。進行波制御は制御応答が外乱位置に依存しないため本制御法では最もロバストな制御法であり、その応答に最も近いc=0.5で制御を行うことが本制御法では最適であると言える。

図5に5次固定振動数で加振した場合の右端境界で制御した場合の時間応答を示す。制御領域で波動伝搬状態、非制御領域で5次モード状態にあることが分かる。制御制限幅は図2に一致している。

文献
(1)西郷・田中・高木,機論,71-703, C(2005), 845-851
(2)西郷・高木・田中,機論,72-716, C(2006), 1136-1144

Fig. 2 Response of driving point (node point 37), 100DOF SS-Case; NC: No control; γ=0.4-0.6: Controlled by Eq.(13) with c=0.4-0.6 at right boundary.

Fig. 3 Response of driving point (node point 37) at 5-th natural frequency; NC: No control; γ=0.4-0.6: Controlled by Eq.(15) with c=0.5 at right boundary.

Fig. 4 Response at 5-th natural frequency for 51 node disturbance; 101 DOF SS-case; NC: No control; WC: WNC+0.4WNC Controlled by γ=0.4 at both boundaries.

Fig. 5 Time response of 5-th natural frequency for 37 node disturbance; 100 DOF SS-case; Controlled by c=0.5 at right boundary.