13-141-3 噬下食品の冷凍保存に関する研究

Research on frozen preservation of the swallow foods

三町博子（阪大院工）
Hiroko Mimachi,
Graduate School of Engng. Osaka Univ.

武田真一（阪大院工）
Shin-ichi Takeda,
Graduate School of Engng. Osaka Univ.

秋山庸子（阪大院工）
Yoko Akiyama,
Graduate School of Engng. Osaka Univ.

西嶋晃宏（阪大院工）
Shigeo Nishijima,
Graduate School of Engng. Osaka Univ.

Key Words: freeze, gel, swallow

ABSTRACT

Several kinds of gel-type food were taken up as examples of the swallow food and changes in texture of the foods during freeze-thaw process was investigated in order to develop a new process, by which foods are not subjected to texture change. In this study, freeze-thaw process is applied to several kinds of gel-type food, and the observation of the foods and the change in the water content were examined. The obtained results showed that the amounts of separated water and dependent on the nature of the consisting materials of the food. Therefore, the results on the change in texture and discussed from the view point of the crystallization process of ice in the hydrogel.

論文要旨

嘔下食品の一例としてゲル食品を取りあげ、その冷凍・解凍処理によるテクスチャーの変化を防ぐことを目的に研究を行なった。本研究では、まず様々な市販のゲル食品の冷凍・解凍を行い、そのときの離水状況を調べた。その結果、ゲルの種類によって離水率は大きく異なるため、離水現象やテクスチャーの変化は食品の様なハイドロゲル中の水分の結晶化過程の問題として捉え、冷凍・解凍処理によるテクスチャーおよび食感の変化の理由を検討した。

1. はじめに

高齢化に伴い、咀嚼・嘔下機能が低下した人が増えている。咀嚼・嘔下障害の在宅介護におけるアプローチとして、食物形態の改善がある。このように、咀嚼・嘔下障害者用に作られた食品を嘔下食と呼ぶ。嘔下食として、よく用いられているゲル状食品には、口腔内で変形しやすい、容易に押しつぶすことができる、食塊を形成しやすい、粘膜にくっつきにくいなどの特徴があるため嘔下食に適している。在宅介護が増えてくると考えられる近い将来、咀嚼・嘔下困難者と家族がとともに食卓を囲むようになる。しかし、食事のたびに家族は別に嘔下食を準備することは大きな負担となり、在宅介護の妨げになる。そこで、調理した嘔下食品を家庭で冷凍保存できれば介護者の負担は減ると考えられる。

一般に、ゲル食品は家庭で冷凍保存すると、冷凍・解凍処理によってゲル中の水分は離水し、食品の特性は変化してしまう。このような現象は物理化学的にはハイドロゲル中の水分の結晶化および形成された水の融解の問題として捉えられる。ハイドロゲル中には自由水や束縛水が存在するので、それらの核形成速度や結晶成長速度はハイドロゲルを構成する物質、例えば、多糖や蛋白質によっても大きく異なる。したがって、形成されたゲルの結晶化が早く異なるため、その結果として、離水の程度や食品のテクスチャーひいては食感を大きく変化するものと推定される。そこで我々は、水の結晶化および水の融解過程に着目して研究を進め、これらの過程を支配するパラメータを制御し、冷凍・解凍処理の前後で食感の変わらない食品ゲルの創製を目指すこととした。

2. 実験

2.1 試料調製

市販されているゲル食品として、ちくわ、木綿豆腐、こんにゃく、網ごし豆腐、玉子豆腐の五種をさいころ状（ちくわは輪切り）に切り、3切れずつカップ状アルミホイルにのせて-84℃で1.5時間冷凍した。凍結したゲルを新しいカップ状アルミホイルに移し、室温で1.5時間自然解凍した。

2.2 実験方法

凍結前のゲルの重量（A）と凍結後のゲルの重量（B）を秤り、下式（1）から離水率を計算した。

\[\text{離水率（％）} = \frac{[A-B]}{A} \times 100 \]

また、凍結前ならびにそれを解凍した後のゲルの状態をデジタルカメラで撮影した。

3. 結果および考察

冷凍後の市販ゲル食品（ちくわ、木綿豆腐、こんにゃく、網ごし豆腐、玉子豆腐）の冷凍前と解凍後の状態をFigure 1～Figure 4の写真に示した。ちくわの外観は冷凍前で変化が無いかに見えた。木綿豆腐はやや体積が収縮していたが表面状態に目立った変化は無かった。こんにゃくは顕著な体積変化は見られなかったが表面に凹凸ができ、冷凍前のぬめらかさを失っていた。網ごし豆腐と玉子豆腐においては、冷凍後の表面には突っ張ったようになされず、体積はやや収縮した。
Figure 1. 冷凍処理前のちくわ（左）と冷凍処理後のちくわ（右）

Figure 2. 冷凍処理前の木綿豆腐（左）と冷凍処理後の木綿豆腐（右）

Figure 3. 冷凍処理前のこんにゃく（左）と冷凍処理後のこんにゃく（右）

Figure 4. 冷凍処理前の玉子豆腐（左）と冷凍処理後の玉子豆腐（右）

表1. 離水率

<table>
<thead>
<tr>
<th>ゲルの種類</th>
<th>冷凍前のゲルの重量（A）（g）</th>
<th>冷凍後のゲルの重量（B）（g）</th>
<th>離水率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>ちくわ</td>
<td>10.29</td>
<td>9.93</td>
<td>3.5</td>
</tr>
<tr>
<td>木綿豆腐</td>
<td>11.47</td>
<td>9.83</td>
<td>14.3</td>
</tr>
<tr>
<td>こんにゃく</td>
<td>16.87</td>
<td>14.28</td>
<td>15.4</td>
</tr>
<tr>
<td>掛こしべ豆腐</td>
<td>15.91</td>
<td>11.71</td>
<td>26.4</td>
</tr>
<tr>
<td>玉子豆腐</td>
<td>19.34</td>
<td>10.50</td>
<td>45.7</td>
</tr>
</tbody>
</table>

通常、ゲルの構造は、網目状に架橋した高分子鎖の中にある溶媒分子（水分子）が閉じ込められている。離水過程をFigure 5のように考えると、冷凍処理ではゲル中で水の結晶化が起こり、解凍処理では氷の融解が起こり、構造中で結晶成長した氷が溶けて離水することが考えられる。特に水の結晶化過程では冷凍初期に起こる自由氷の結晶化と後期に起こる束縛氷の結晶化が必要で、離水率と食感に大きく影響を及ぼす。前者は食品のテクスチャー変化を誘起し、後者は味の変化を誘起するものと思われる。例えば、冷凍・解凍処理を施しても離水率に差はなかったこんにゃくと木綿豆腐を比べた場合、前者は収縮があまり起こらなかったが、後者では収縮が起こった。このことは両食品中に含まれる水の束縛状態の違いを示唆している。前者では自由氷の割合が大きく、そのため氷の結晶生成速度が大きく、テクスチャーにより大きな変化をもたらし、後者では蛋白分子に束縛された氷が結晶化することで束縛水を取り込みながら氷の結晶化が進行し、それが融解の際に離水し、より大きな収縮をもたらしたと推察される。

次に、離水率測定の結果をTable 1に示す。最も離水率が高かったのは玉子豆腐で45.7%であった。次いで、こんにゃく、こんにゃく、木綿豆腐の順になった。玉子豆腐の離水率の高さは、ゲル化するときの処理過程の違いによるのではないかと考えられる。こんにゃく、こんにゃく、木綿豆腐はいずれも原料にアルカリを加えることでゲル化が進行する。一方、玉子豆腐のゲル化は玉子の熟変性によるものであり、このことからイオン添加がゲルの離水抑制に関与していることが示唆される。以上のことから、これら食品の離水現象や食感の変化はハイドロゲル中の水の振る舞い、特に水の凍結、解凍に伴うゲルの構造変化と水の状態変化の問題として捉えることができる。

今後は、物理化学的測定を進めて得られたデータをもとに詳細なモデル化を行い、食感の変化を生じさせない処理、検討を行う。