652 不均質燃焼場の燃焼特性に及ぼす噴霧及び点火の影響について

Influence of injection and ignition on combustion characteristics of the heterogeneous combustion field

○学 渕谷 直史（法大院） 正 川上 忠重（法政大）
Naofumi Shibuya, Faculty of Engineering Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo
Tadashige Kawakami, Faculty of Engineering Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo

Key Words: Combustion, Multi Points Injection, Ignition

1. 緒論
近年、地球温暖化、大気汚染など環境に関する対策が急がれている。その中でも化石燃料やエネルギーの大量消費による地球温暖化や燃焼汚染が深刻化している。その原因の一つとして、過剰燃焼が排出されるNOx、COx、SOx、HC、PMなどの有害物質がある。このような背景を考慮に、有害物質の排出を極力抑制する必要があり、また燃焼の高効率化も重要な検討課題の一つとなっている。

現在までに、直噴型の燃料噴霧方式や、燃焼形態に着目した研究が数多く行われている。しかし、これらの燃焼の燃焼室への着火に伴って未燃焼が発生しないため、環境への影響も指摘されている。また、燃料燃焼を利用した希薄燃焼の研究が数多く行われており、有害物質の低減がより重要である。

そこで、本研究では、同時及び噴霧タイミングの異なる多点噴霧方式を用いて燃料を微細化させ、燃焼室内への燃料着火の低減を図ることにより燃焼促進に及ぼす影響について検討を行った。また、同時及び噴霧タイミングの異なる多点噴射方式を用いて実験を行い、点火エネルギー増大点火位置の変化による、燃焼促進効果及び火炎の干渉効果に関する考察も行った。

2. 実験装置及び実験方法
Fig. 1に示す実験装置の概略図を示す。本体は主に燃焼室、噴霧装置、点火装置、遅延回路及びデータサンプリング制御系から構成されている。燃料噴霧は、内径160mm、長さ120mmの円筒形状（内容積約2500cc）で、圧力ピックアップセンサー、燃料噴霧装置及び燃焼ガス圧力が正確に知られるように、変位の前後で変化させることができる。燃料噴霧は、燃料供給用燃料タンク、燃料供給用燃料ポンプ、インジェクタ、噴霧タイミング調整遅延回路等から構成されており、燃料噴霧装置内に気泡を含む燃焼ガスをパイパス管の開閉度を調整することにより、燃料噴霧を調節することができる。なお、点火は点火の自動車用リレー回路を利用した火花点火方式が採用されている。実験に際しては、空気室内の気温の変化を示すため、連続式で計測された空気室の温度を一定に保つことができ、燃焼室内的燃料噴霧が開始される。遅延回路を介して火花点火が行われることにより、燃料噴霧を構成した燃焼室での燃焼特性を観察することが可能である。

3. 実験結果及び考察
Fig. 2に、本実験での燃料噴霧量に及ぼす燃料供給圧力及び噴射弁開閉時間（インジェクタへの通電時間と等価と仮定）の評価のために、燃料供給圧力に対する燃料噴霧量を、噴射弁開閉時間のパラメータとして示す。この図から明らかのように、燃料噴霧量が増大すると燃料噴射量に伴い燃料噴射量は単調に増大している。また、燃料噴射弁開閉時間の増大により、燃料噴射弁開閉時間の増大に伴い燃料噴射量は増大している。さらに、その増加は燃料弁開閉時間の増大に伴って増大している。これにより、本実験範囲では、燃料弁開閉時間及び燃料噴射弁開閉時間の調整により、ある程度燃料噴霧量の制御が可能である。

Fig. 3に、単噴射方式を用いた場合の多点燃焼特性に及ぼす影響を検討するために、各点火方式での最大熟発生率及び最大燃焼率が求められた点火からの時間を示す。なお、ここではグラフの都合上、最大燃焼率が求められた点火からの時間目盛を同化表示した。ここで、0.40、0.60は点火後の燃焼室中心からの距離[mm]で、40、60は点火焦の半径、0.40-0.60は二点同時点火、0-0.40-0.60は三点同時点火を示す。この図から明らかのように、二点点火及び三点点火を行った場合には、中心点火点を行なた場合よりも、著しい急速燃焼が観察されており、最大燃焼率も増加している。これは、単噴射方式においても多点
噴霧実験

乱れや部分的な温度上昇による火点火点は早期に噴霧開始が確認された。三口同時点火の方がより急速燃焼しており、火点位置による燃焼促進効果が認められた。

Fig. 4 に、噴霧前のプロパラン空気混合気の当量比及び総括当量比をそれぞれ$q=0.9$及び$q=1.05$とし、一点火による時間差対向噴霧方式を用いた場合の最高燃焼圧力及び全燃焼時間を示す。ここで、横軸は左側インジェクターの噴霧開始時間を0sとしたときの右側インジェクターの噴霧開始時間である。また、点火は常に左側インジェクターの噴霧開始から0.001s後に行われた。この図から、左右同時噴霧したときよりも、右側インジェクターの噴霧を0.01s早期に行った場合に、より大きい最高燃焼圧力が得られた。また、0.01s早期に行った場合と遅延させた場合の両方で、全燃焼時間の短縮が観察された。このことから、喷霧タイミングが適切に変化することで燃料が広範囲に割り最終燃焼が促進されたと考えられる。なお、q及びpを変化させてもほぼ同様の傾向が観察された。

Fig. 5 に、対向噴霧方式を用いた場合の同時及び点火タイミングの異なる三口点火の最高燃焼圧力を示す。なお、パラメータは総括当量比を$q=1.05$一定とし、噴霧前のプロパラン空気混合気の当量比を$q=0.9$、0.8、0.7とした。横軸は中心点火による噴霧時間を0sとしたときの60-40点火の点火遅延時間を示しており、ここでの0sは三点同時点火である。この図から、60-40点火点の点火時間を遅延することにより、遅延時間$0.02-0.04$s付近で最高燃焼圧力が著しく増大している。これは、中心点火により発生した火炎面に対して、60-40点火点で遅延点火させた場合に発生した火炎面との干渉効果により、未燃焼気の乱れや部分的な温度上昇により急激な燃焼改善効果を考えられる。また、同一総括当量比における噴霧前のプロパラン空気混合気の当量比に着目すると、$q=0.8$の場合がその最大率が最大となっている。

今後、最高燃焼圧力の増大率に及ぼす最適条件についても検討を行う予定である。

4. 結論
本実験では、プロパラン空気混合気にpへキサデカンを噴霧させた場合の燃焼特性に及ぼす、同時及び噴霧タイミング、点火タイミングの異なる対向噴霧、点火点火時の影響について検討を行った。以下に結果を示す。

1) 同時点火点火方式において、各点火位置を壁面近傍に配置することにより、全燃焼時間は短縮する。
2) 対向噴霧方式においては、燃料噴霧の開始タイミングの制御により、同一総括当量比においても、最高燃焼圧力が増大する領域が存在する。
3) 多点火点火方式の最高燃焼圧力は、同一総括当量比においても点火タイミングに差異を設定することにより増大する。

5. 参考文献
(1) 原田ほか2名. 機論, 67-660, B(2001), 2141
(2) 西島ほか2名. 機論, 67-670, B(2001), 1821
(3) 渡谷直史・川上忠重. 日本機械学会関東支部山梨講演会講演論文集 No. 120-3, (2012), 174