材料
Online ISSN : 1880-7488
Print ISSN : 0514-5163
ISSN-L : 0514-5163
論文
複合荷重下での疲労き裂の進展経路の予測
田中 啓介高橋 弘樹加藤 拓也秋庭 義明
著者情報
ジャーナル フリー

2005 年 54 巻 12 号 p. 1281-1287

詳細
抄録

A simulation of fatigue crack propagation from a hole or crack under combined axial and torsional loading was conducted on the basis of the maximum tangential stress criterion for determining the crack path. The simulation results of the crack propagation path were compared with the experimental results obtained from fatigue tests by using thin-walled tubular specimens made of a medium-carbon steel. Fatigue cracks are nucleated at the position of the maximum of the amplitude of the tangential stress around the hole, and propagated straight away from the hole. The path of fatigue crack propagation from a hole or a crack followed the direction perpendicular to the maximum of the range of the tangential stress, Δσ*θmax, near the crack tip calculated from the stress intensity ranges by considering the contact of crack faces near the minimum load. The crack path predicted from the Δσ*θmax criterion was very close to that calculated from the maximum of the total range of the tangential stress, Δσθmax, calculated by neglecting the crack face contact. The superposition of static mode II shear loading changes slightly the propagation path of a crack propagating under uniaxial tension compression. This deviation is caused by the generation of cyclic mode II component due to the zigzag shape of a fatigue crack.

著者関連情報
© 2005 日本材料学会
前の記事 次の記事
feedback
Top