5 孔食・すきま腐食*

長野博夫**

Pitting and Crevice Corrosion

by

Hiroo NAGANO

(Central Research Laboratories, Sumitomo Metal Ind., Ltd., Amagasaki)

5.1 はじめに

ステンレス鋼、ニッケル、チタンなどのような金属材料は、金属表面上に酸化物を主とする不動態皮膜を形成することによって、中性溶液、酸、アルカリに対して優れた耐食性を発揮する。しかし、溶液中に Cl⁻イオンのようなハロゲンイオンが含まれると、不動態皮膜が局部的に破壊され、孔食、すきまま腐食を生じ、これらの金属材料から構成される構造物や熱交換器にしばしば大きな損傷を与えることがある。

ステンレス鋼の水溶液環境における腐食事故を腐食形態で分類すると、応力腐食割れ40%，孔食・すきま腐食26%，全面腐食17%，粒界腐食10%で報告されている。応力腐食割れの起点として孔食・すきまま腐食が関与する場合も考えられることから、ステンレス鋼の腐食・防食においては、局部腐食機構の研究ならびに耐食材料の開発の研究は重要なものとなっている。

5.2 孔食

5.2.1 孔食の機構

図5.1にOpen pitとClosed pitの両方の模型を示す。

通常の孔食には図5.1(b)に示されるように、不動態皮膜にCl⁻などのようなハロゲンイオンが吸着し、塩化物－金属の電解を形成するために、不動態皮膜が局部的に溶解して微小欠陥を生ずるものが多い。

孔食の過程は発生と成長の2段階から成り立つ、すなわち、

(1) 誘発期間：陰イオン（ハロゲンイオンなど）と酸化物との競争吸着

(2) 孔食電位より貴な電位における孔食の発生

(3) 食孔内のpH低下による活性溶解

金属のアノード溶解により生じた Fe²⁺, Cr³⁺の(1)式

\[\text{Men}^n+ + nH_2O \rightarrow \text{Me(OH)}_n + nH^+ \] で示される加水分解、ならびにCl⁻イオンの濃縮による、食孔内のpHは低下する。

\[\text{Men}^n+ + nH_2O \rightarrow \text{Me(OH)}_n + nH^+ \] (1)

表5.1に各種金属の腐食速度におけるpHの低下程度を示す。

5.2.2 孔食電位

図5.2はステンレス鋼の5％NaCl溶液中における電位－電流曲線である。\(V_c \)は孔食電位を示す。電位を貴方向に分極していた場合、不動態皮膜が破壊され、孔食が発生しはじめめる電位である。\(E_{pp} \)は保護電位とよばれ、孔食発生後、電位を点線のような卑方向に分極していく場合、再不動態化する電位である。この\(E_{pp} \)は成長した孔食の大きさに左右される。また、\(V_c \)が定常的な測定値であるのに対し、一定速度の電位掃引法で測定した場合の孔食電位を\(V_c' \)として区別している。

5.2.3 孔食に及ぼす環境側因子の影響

孔食はCl⁻, Br⁻, I⁻イオンなどのようなaggressive anionによって不動態皮膜が破壊されることにより発生するものであるので、当然のことながら溶液中のハロゲンイオン濃度、温度、pHの影響をうける。既述したように、ステンレス鋼はそれぞれの環境に対して特有の孔食電位を有し、鋼の腐食がこの孔食電位\(V_c \)よ
表 5.1 局部腐食箇所における pH の低下 (久松) ⑩

<table>
<thead>
<tr>
<th>Materials</th>
<th>Bulk soln</th>
<th>Bulk pH</th>
<th>Local site</th>
<th>Local pH</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild steel</td>
<td>3.5% NaCl</td>
<td>6.5~6.8</td>
<td>Macro-anode</td>
<td>6.0~6.5</td>
<td>Clancy</td>
</tr>
<tr>
<td>4340 steel</td>
<td>0.1N NaCl</td>
<td>2~10</td>
<td>Fatigue crack front</td>
<td>3.5~3.9</td>
<td>Smith</td>
</tr>
<tr>
<td>Steels</td>
<td>35% NaCl</td>
<td>6.0</td>
<td>SCC crack tip</td>
<td>3.7</td>
<td>Sanders</td>
</tr>
<tr>
<td>0.45% C steel</td>
<td>3.5% NaCl</td>
<td>6.5</td>
<td>SCC crack tip</td>
<td>3.8</td>
<td>Brown</td>
</tr>
<tr>
<td>Ti-8Al-1Mo-1V</td>
<td>3.5% NaCl</td>
<td>6.5</td>
<td>SCC crack tip</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>7075 Al</td>
<td>3.5% NaCl</td>
<td>6.5</td>
<td>SCC crack tip</td>
<td>3.5</td>
<td></td>
</tr>
</tbody>
</table>

	Al	0.5% NaCl	4.5	Active SCC crack tip	≤1.0	Rensfeld
	304 S.S.	154°C MgCl	6.3~6.7	Crack	1.4~1.6	Baker
	304 S.S.	Sea water (393 days)	8.2	Crevice	1.2~2.0	Peterson
	Stainless steel	Sea water	8.3	Crevice	2.3	Kerovin
	304L S.S.	0.5% NaCl 70°C	5.4	Artificial pit	0.69~0.80	Suzuki
	316L S.S.	0.5% NaCl 70°C	5.4	Artificial pit	0.06~0.17	
	18Cr-6Ni-5Mo	0.5% NaCl 70°C	5.4	Artificial pit	-0.13~0.08	

| | Al | Fill-form corrosion | 0% | Crevice | 1.0 | Hoch |
| | Mg | | 2~3 | Active heads | | |

図 5.2 ステンレス鋼のNaCl 溶液（常温）における動電位分極曲線 (R. Baboian)⑤

図 5.3 クロム Cl イオン濃度における SUS304 の動電位分極曲線 (NaCl. 72°C, 0.7 V/h) (M. J. Johnson)⑩

図 5.4 5% NaCl 溶液における各種ステンレス鋼の孔食電位に及ぼす温度の影響電位勾配速度 50 (mV/min) (O. Steensland)⑨

（96）
以上では孔食電位は著しく貴になる。また pH8 以下から酸性側では pH の影響は非常に小さい。

5.2.4 孔食に及ぼす材料側因子の影響

孔食は主に表面に発生するか、また非金属介在物の近傍、とくに硫化物の析出部に発生しやすい。硫化物の近傍に孔食が発生すると、食孔内の pH が下るため、下記の反応により食孔の成長が促進される。

\[
\begin{align*}
\text{MnS} + 4\text{H}_2\text{O} &\rightarrow \text{Mn}^{2+} + \text{SO}_4^{2-} + 8\text{H}^+ + 8\text{e} \quad (2) \\
\text{MnS} + 2\text{H}^+ &\rightarrow \text{Mn}^{2+} + \text{H}_2\text{S} \quad (3)
\end{align*}
\]

一方、孔食感受性は金属の表面状態および添加元素などの影響をうける。例えば、25Cr-Mo 系合金の孔食電位に及ぼす表面状態の影響で、機械研磨した方が電解研磨したもの孔食電位がかなり貴である。

ステンレス鋼の耐孔食性を高める合金元素としては Cr, Ni, Mo, Ti, Si があげられる。とくに Cr や Mo の効果が顕著である（図 5.6 および 5.7）。Cr はステンレス鋼の不働態皮膜の主成分である水和オキシ水酸化クロム（定性的には CrOOH）を形成する。

\[
\text{MoO}_2 + 2\text{H}_2\text{O} \rightarrow \text{MoO}_4^{2-} + 4\text{H}^+ + 2\text{e} \quad (4)
\]

により、生成した MoO_4^{2-} が Cl^- イオンの不働態皮膜への吸着を抑制することにより、耐孔食性をあげると説明されている。図 5.8 はこの考え方を裏付けるもので、溶液中の MoO_4^{2-} イオンが孔食発生の限界温度を高めることを示す。

5.3 すきま腐食

5.3.1 すきま腐食の機構

すきま腐食は、ガスケット、バックラップの当り面、ボルト・ナット締付部、金属すり合わせ部およびスケールと腐食物などの相互作用によって起こる。

すきま腐食には二つのタイプが考えられる（図 5.9）。一つは金属腐食電池に基づくもので、Evans によれば鋼の場合がこれにあてはまる。他的一つは、鉄鋼、アルミニウム、チタン、亜鉛などに該当する通気腐食電池に基づくすきま腐食(b)である。

通気腐食電池に基づくすきま腐食は、まず少しがくわしく説明すると下記のようになる。

(1) すきま内の酸素消費により、すきま内とすきま外金属表面との間における酸素酸化電池の生成。

(2) すきま内の不働態下でのアノード溶解に基づく溶出イオン（Cr^{3+}, Fe^{3+}）などが必要。これらのイオンの加水分解および Cl^- イオンの濃縮による pH の
低下。

(3) 限界電位（すきま腐食電位 \(V_{\text{crev.}} \)）より貴
た電位による不働態皮膜の破壊。不働態／活性態
転移の \(\text{pH} \)（Depassivation \(\text{pH} \）以下で不働態皮
膜の還元による破壊が起る。

(4) さらに \(\text{pH} \) 低下による活性溶解に伴うすきま腐
食の成長。

上記の一連のすきま腐食の機構において、小川らは
(2)に関連させてすきま内の \(\text{pH} \) と濃縮 \(\text{Cl}^- \) の関係と
して

\[
(\text{pH})_{\text{crev.}} = 4.7 - 3.2 \log [\text{Cl}^-]_{\text{crev.}} \quad (5)
\]

を見いだしている。

(3)に関連しては、\(\text{Cl}^- \) イオンを含む水溶液中では、
(6)の \(\text{Cl}^- \) イオンによる皮膜の破壊が見られ
るが、\(\text{Cl}^- \) のない水溶液中において、(6)の低 \(\text{pH} \) のための
酸化皮膜の還元が図解される考えられる。

5.3.2 すきま腐食電位

図5.10は304ステンレス鋼の塩化物溶液中における
孔食（\(V_c \）およびすきま腐食発生電位（\(V_{\text{crev.}} \））を示
す。\(V_{\text{crev.}} \) の方が貴な電位になるのは、上述したよう
に、すきま内における \(\text{pH} \) の低下、\(\text{Cl}^- \) イオンの濃縮、
\(\text{O}_2 \) の欠乏に基づくものである。事実、実環境におけ
る局部腐食の事例においては、すきま腐食タイプの腐
食の方が孔食タイプの腐食より発生する頻度がるか
多い。

表5.2 すきま腐食電位

<table>
<thead>
<tr>
<th>(0.5% \text{NaCl})</th>
<th>(0.5% \text{NaBr})</th>
<th>(0.5% \text{NaI})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_c)</td>
<td>0.62</td>
<td>0.61</td>
</tr>
<tr>
<td>(V_{\text{crev.}})</td>
<td>0.31</td>
<td>0.40</td>
</tr>
<tr>
<td>(316)</td>
<td>0.81</td>
<td>0.63</td>
</tr>
<tr>
<td>(V_{\text{crev.}})</td>
<td>0.44</td>
<td>0.57</td>
</tr>
</tbody>
</table>

図5.10 SUS304ステンレス鋼の塩化物溶液中における
孔食（\(V_c \）およびすきま腐食発生電位（\(V_{\text{crev.}} \））を示
す。\(V_{\text{crev.}} \) の方が貴な電位になるのは、上述したよう
に、すきま内における \(\text{pH} \) の低下、\(\text{Cl}^- \) イオンの濃縮、
\(\text{O}_2 \) の欠乏に基づくものである。事実、実環境におけ
る局部腐食の事例においては、すきま腐食タイプの腐
食の方が孔食タイプの腐食より発生する頻度がるか
多い。

5.3.3 すきま腐食に及ぼす環境因子の影響

すきま腐食の程度をすきま形状の影響を大きくく

図5.11は13Cr鋼のすきま腐食量をすきまま幅と
の関係を示す。局部的なすきま腐食深さは、0.10～
0.12mmのすきま幅のときに最大となる。また、す
きま腐食量はすきまに対し、すきま外の面積の大き
いほど大となる。

表5.3 すきま腐食発生の限界温度

<table>
<thead>
<tr>
<th>鋼種</th>
<th>21〜25°C</th>
<th>30°C</th>
<th>40°C</th>
<th>50°C</th>
<th>60°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>20Cr-2Mo</td>
<td>yes</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>22Cr-2Mo</td>
<td>yes</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>25Cr</td>
<td>yes</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>26Cr-1Mo</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>25Cr-2Mo</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>28Cr-2Mo</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>—</td>
</tr>
<tr>
<td>25Cr-3.5Mo</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>—</td>
</tr>
<tr>
<td>25Cr-5Mo</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

すきま腐食に影響を及ぼす環境因子としては、溶
存酸素、流速、ハロゲンイオン濃度、温度、 \(\text{pH} \)
などが挙げられる。すきま腐食はすきま内外の酸素濃度差
に基づく酸素溶存電池によって発生するものである
ので、溶液の酸素濃度や流速の大きいほど、すきま腐食
量は大きくなる。また、ハロゲンイオン、温度、 \(\text{pH} \)
などの影響は、その傾向として孔食の場合とほぼ同様
であるが、同一の条件下では、すきま腐食の方が孔食
よりもはるかに起こりやすい。

表5.3 すきま腐食発生の限界温度

表5.3 1N NaCl溶液中における13Cr鋼のすきま腐食
発生の限界温度の影響を示す。鋼種との関係において、
Mo含有量の多い程、すきま腐食発生の限界温度は高

(98)
孔食・すきま腐食

図5・12 ステンレス鋼のすきま腐食に及ぼす pH の影響（小若、長野）

なくなっている。なお、この実験では、試験片とガラス球との接触によりすきままを形成させている。

図5・12は2枚の板状試験片を重ね合わせたすきま腐食試験片を用いて行った試験の結果で、2 000 ppm Cl− + 活性炭の溶液中において、ステンレス鋼のすきま腐食は pH の下でほど大きく不均一傾向にある。なお、活性炭はすきま腐食を加速するために用いたものである。

5・3・4 すきま腐食に及ぼす材料御因子の影響
ステンレス鋼の耐すきま腐食性は、孔食の場合と同様に、Cr、Ni、Mo の添加量により向上する。図5・13は各種二相ステンレス鋼の耐すきま腐食性を316Lと比較したものである。すきま腐食の発生しない限界の電位（Immunity potential）の大きさは、25Cr-6.5Ni-3Mo-W（DP3）＞25Cr-7Ni-3Mo（DP2）＞20Cr-6Ni-2Mo-Ti（DP4）、316L、18Cr-5Ni-1.5Si-2.5Mo（DP1）＞22Cr-6Ni-Ti（DP5）となる。海水環境に対しては、前二者の二相ステンレス鋼のDP3、DP2のみが使用可能と考えられる。

なお、ステンレス鋼ではすきま腐食が避けられないようなすきまを形成する環境下では、Inconel 625、Haotello C、Ti、Ta、Nb などの特殊な材料が使用される。今後さらにはこの分野での発展を期待するものである。

参考文献
1) 久松敏弘、鉄と鋼、63、574（1977）。
3) 久松敏弘、金属化学、11、59（1974）。
5) Johnson, M. J., ibid., p. 262 (1972)。
6) Steensland, O., Corrosion Prevention and Control, p. 25 (1968)。
11) ヤククリステル・カーレン, 配管と装置、12、27 (1972)。
13) 板木功二、日本金属学会報、15、203（1976）。
16) 小川洋之、伊藤 功、中田誠雄、細井祐三、岡田秀弥、鉄と鋼、63、605（1977）。
17) 坂原功雄、防食技術、24、453（1977）。
18) Rosenfeld, I. L., The U. R. Evans International Con-

昭和63年3月 (99)
“Topics in Applied Physics, Vol. 17: Electroluminescence”
J.I. Pankove 著
(1977年 Springer-Verlag 発刊 235 x 158 mm 212頁 ¥ 10,560)

本書は、(1)新しくこの分野の研究や開発をする人達への入門書の役割を果たすために、最近の技術的発展を把握しながら、その奥深なる物理現象を解釈すること、および(2)この分野の専門家には最新の文献を紹介することを意図して書かれたものである。全編6章212ページから成り、米国の Pankove が編者となって、英、米、ソ連、日本の研究者9人が分担執筆している。

第1章では、編者がエレクトロリミネンスの基礎について述べ、結晶の中での発光機構の解釈と、結晶への電気エネルギーの供給の仕方についての解釈を行っている。エレクトロリミネンスは大別して電流注入型と電界印加型に分類され、以下の2-6章で論じられる材料別の各論を容易に理解するための導入部を構成している。

第2章は、周期律表のⅣ族の半導体 SiC の EL に関するものである。1920年代にすでにこの材料に電流を流すことにより発光現象が観察されている最も古い物質である。熱的、化学的、機械的に強いこの材料は発光材料としても優れた性質をもっているが、結晶の製作温度が高いため、素子の製作は他に比べて困難である。青色発光用の材料として注目され、エレクトリミネンス、EL の特性などが論じられている。

第3章は、Ⅲ-V 化合物半導体についてまとめられているので、発光ダイオード材料として最も興味深いものである。種々の組み合わせた化合物が存在するが、ここでは塩素添加型の材料、GaP, GaAsP, GaN などをの例を挙げている。

第4章では、Ⅱ-VI 化合物半導体について論じている。この材料は発光特性として良好なものをもっているが、エレクトロリミネンスを得る素子の製作が困難で未だに実用化されていない。素子製作に関する最近の進歩の新しき試みが論じられている。

第5章は、Ⅴ-VI 化合物に等価な IV-V II-IV-VI 化合物の基礎的性質と試作発光素子の特性であるが、まだ実験室段階のデータが多く、今後の発展が待たれる。

第6章は、電界強度を薄い膜 EL とよばれる素子についての章である。この素子は1960年代前半には「新しい面光源」としても利用されてきた。また、寿命、効率、寿命などの研究が行われてきている。しかし、最近の材料科学の進歩に伴い、新しい材料が開発されることが予想される。

全体を通じ、材料の選択、製作法を含めて、最近の研究成果も要観くとまとめられている。材料科学の進歩に伴い、新しい材料が開発されることが予想される。