Effects of Loading Rate and Stress-State on Dimple Fracture

Samsul RIZAL and Hiroomi HOMMA

Graduate School of Engineering
Department of Mechanical & Structural Engineering
Toyohashi University of Technology
Tempaku-cho, Higashi-ku 441-8580, Japan.

Abstract: The influence of the specimen thickness on fracture have been investigated under static loading and interpreted in terms of stress conditions near a crack tip, namely crack tip plasticity under plane strain to plane stress condition. This work investigates the effect of stress conditions on dimple fracture produced by impulsive stress intensity of 20, 40 and 80 μs duration, experimentally and numerically. The fractographic observation shows that several voids nucleated at inclusions ahead of a crack tip coalescence with each others to form a large void, called a dominant void in this work, and that a size of the dominant void decrease as the pulse duration decreases from 40 μs to 20 μs, whereas the dominant void is nucleated at the constant distance from the crack tip. Finite element analysis shows that the hydrostatic stresses ahead of a crack tip can explain the experimental results that the dynamic fracture toughness of a 10 mm thick specimen is much smaller than that of a 3 mm thick specimen and that the void nucleation site is independent of the specimen thickness.

Key words: Stress pulse duration, Dynamic fracture toughness, Dimple fracture, Stress-state, Dominant void.

1. INTRODUCTION

An aluminum alloy 7075-T651 is the most common material used for aircraft structures. For safe and economic consideration, it is required to know the mechanical properties and the fracture behaviors. In aluminum alloy 7075-T651, dimple fracture mainly takes places even under impulsive loading conditions [1]. Dimple fracture of metals usually develops through three stages: the first stage is void nucleation at the interface of matrix and a secondary particle or in a secondary particle due to its break, the second stage is void growth and the final stage is void coalescence with a crack if a critical condition reaches. Hancock and Mackenzie [2], Hancock and Brown [3] and Hancock [4] examined void nucleation and growth at various tri-axial stress level through experiments on notched bar with different notch root sharpness. They showed that three stages are significantly affected by triaxial stress and strain. Another result by Broek [5] showed that the void initiation strongly depends on size of the inclusion particle at nucleation site, and Schwalbe [6] showed that fracture toughness depends on particle spacing, and with homogeneity of particle distribution.

In the previous work [1], the authors carried out impact fracture toughness tests under the plane strain conditions for the 7075-T651-aluminum alloy. The experimental results indicated that one or few dominant voids were nucleated around 110 μm ahead of an initial crack tip and grew with dynamic stress intensity to coalescence with the initial crack tip at the final stage. To clarify the dimple fracture mechanism in various aspects, this work uses 3 mm thick specimen, so that a stress condition close to plane stress can prevail in the specimen and investigates dimple fracture in focus on the effect of loading rates and stress conditions near the crack tip.

2. EXPERIMENTAL METHOD

2.1. Experimental Set-up

The experimental apparatus primarily consists of a gas gun, a projectile and a load transfer rod as shown in Fig. 1. A pre-cracked specimen shown in Fig. 2 is placed attaching the midpoint of the specimen ligament side with a round end of the load transfer rod. A cylindrical barrel is 2000 mm in length and 30 mm in inner diameter. When the solenoid valve is opened, the nitrogen gas flows into the barrel to push the projectile. The compressive stress...
wave generated by the collision travels in the rod and partially propagates into the specimen.

Although having no support, the specimen is bent and swung back due to an inertia effect. Then, the specimen vibrates in a bending mode at its natural frequency. The natural frequency strongly depends on specimen compliance, namely the specimen length. The shorter specimen has a higher natural frequency. The specimen geometry and dimensions shown in Fig. 2 are used in the experiment. These specimens provide three different time histories of stress intensity factor at the crack tip. This type of loading called one-point bending. The nitrogen gas pressure and the projectile traveling distance in the barrel change the amplitude of stress intensity.

2.2. Material and Specimen

The material used in the experiment is an aluminum alloy 7075-T651. The mechanical property and chemical compositions are given in Tables 1 and 2. As explained above, a specimen sustains different time histories of the stress intensity depending on its geometry. The measurement of stress intensity showed that the time history of the stress intensity at the crack tip has 80 μs duration, for the 180 mm long specimen, 40 μs duration for the 100 mm long specimen, and 20 μs duration for the 50 mm long specimen, at a half of the first amplitude. Two examples of measured stress intensity pulses are shown for the 50 mm and 180 mm long specimen in Fig. 3. The stress pulse duration is defined as the duration at the half of first pulse amplitude.

Table 1. Mechanical properties of Al 7075-T651.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength (MPa)</td>
<td>570</td>
</tr>
<tr>
<td>0.2% proof stress (MPa)</td>
<td>523</td>
</tr>
<tr>
<td>Elongation (% in 50 mm)</td>
<td>11</td>
</tr>
<tr>
<td>Young's Modulus (GPa)</td>
<td>71</td>
</tr>
<tr>
<td>Density (Kg/m³)</td>
<td>2700</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>0.33</td>
</tr>
<tr>
<td>Rayleigh wave velocity (m/s)</td>
<td>3741</td>
</tr>
</tbody>
</table>

Table 2. Chemical composition of Al 7075-T651 (wt%).

<table>
<thead>
<tr>
<th>Element</th>
<th>Si</th>
<th>Fe</th>
<th>Cu</th>
<th>Mn</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.4</td>
<td>0.5</td>
<td>1.5</td>
<td>0.3</td>
<td>2.5</td>
</tr>
<tr>
<td>Zn</td>
<td>5.6</td>
<td>2.3</td>
<td>0.3</td>
<td>Aluminum Remain</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Specimen geometry and dimension (unit: mm).

2.3. Measurement of Dynamic Stress Intensity

Dynamic stress intensity history in each specimen was measured by a strain gage with a 1 mm gage length mounted at the position 7 mm far from crack tip. The method was developed by Dally and Sanford [7] and the detail of the strain gage position is shown in Fig. 4. The angles α and θ of the strain gage depend on the Poisson’s ratio ν of the specimen material. The strain in the X direction can be expressed in the following series:
Effect of Loading Rate on Dimple Fracture

\[2G_k \epsilon'_{xx} = A_0 r^{-1/2} \left[k \cos(\theta/2) - (1/2) \sin \theta \sin(3\theta/2) \cos 2\alpha \right. \]
\[+ \left. B_0 (k + \cos 2\alpha) + A_1 r^{1/2} \left[k + \sin^2(\theta/2) \cos 2\alpha \right. \right. \]
\[\left. - \left. (1/2) \sin \theta \sin 2\alpha \right] \right. \]
\[+ B_1 r (k + \cos 2\alpha) \cos \theta - 2 \sin \theta \sin 2\alpha \] \hspace{1cm} (1)

where \(G \) is the shear modulus, \(A_0 = K_I/2 \), \(v/(1+v) \) and \(A_1, B_0, \) and \(B_1 \) are constants. If \(\alpha \) and \(\theta \) are chosen so that the second, the third, and the fourth terms in the right hand side of the above Eq. (1) are zero, the strain \(\epsilon'_{xx} \) near the crack tip is accurately expressed by only the first term. As the Poisson's ratio of the aluminum alloy is approximated as \(1/3 \), \(\alpha \) and \(\theta \) become 60°, and eventually the dynamic stress intensity factor is given by substituting the strain reading into the Eq. (1) as follows:

\[K_I = E \epsilon'_{xx} \sqrt{(8/3)\pi r} \] \hspace{1cm} (2)

where \(E \) is Young's modulus.

It should be noticed that this relation was derived on the basis of static conditions. However, a stress and a strain field near a crack tip impinged by a stress wave can be also expressed by the same equation. So, Eq. (2) can hold validity for the dynamic stress conditions, either.

![Fig. 4. The mounting a strain gage positions.](image)

2.4. Dynamic Fracture Test

For each specimen geometry, at least eight identical specimens having a crack of the same length were prepared and a stress intensity pulse of a different amplitude was applied to each specimen. As a projectile strikes the load transfer rod, and a compressive stress wave propagates through a specimen, the specimen is bent and swung back due to the inertia effect. As expected, the strain gages mounted 7 mm far from a crack tip is exposed by a diffraction wave from the crack tip about 1.87 \(\mu s \) after the stress wave impinge the crack tip. The maximum strain of the first pulse on the strain-time trace is used to calculate a dynamic stress intensity factor. The crack instability can take place by the first pulse if the amplitude sustained by the crack is large enough.

3. EXPERIMENTAL RESULTS

3.1. Dynamic Fracture Toughness

The crack growth was examined for each specimen with an optical microscope after an impact test. The experimental results are shown for the 10 mm thick specimen in Fig. 5 and for the 3 mm thick specimen in Fig. 6. In the figures, the amplitude of the first dynamic stress intensity pulse, which is measured by a strain gage mounted near the crack tip, is plotted against the pulse duration with the crack growth inspection result. The open circle means that the crack grew under the stress intensity pulse, while the solid one means no crack growth. The critical dynamic stress intensity for the crack initiation or dynamic fracture toughness is defined as the midpoint between the maximum solid mark and the open circle.

![Fig. 5. Dynamic stress intensity as a function of pulse duration (10 mm thickness).](image)

![Fig. 6. Dynamic stress intensity as a function of pulse duration (3 mm thickness).](image)
minimum open mark. The dynamic fracture toughness is shown in Fig. 7. The dynamic fracture toughness K_{Id} increases as the pulse duration decreases from 80 μs to 20 μs. As seen in the figure, the dynamic fracture toughness K_{Id} for the 10 mm thick specimen is apparently smaller than for the 3 mm thick specimen over all the pulse durations. According to the ASTM E399-90 size requirement for the plane strain condition, the 10 mm thick specimen can provide a valid plane strain fracture toughness value over the tested pulse duration. On the other hand, in the 3 mm thick specimen, the crack initiation takes place under the condition close to the plane stress.

To provide the evidence for the fact that the crack sustained the low stress intensity at the initiation for the thicker specimen and the longer pulse duration, the stretched zone width (SZW) was measured on the electron microscopic photograph of the fracture surface. The stretched zone (SZ) indicates crack tip blunting prior to physical crack extension. A number of works tried to relate the geometry of the stretched zone (SZ) to fracture toughness K_{IC} and revealed that the correlation between K_{IC} and stretched zone displacement (SZD) or stretched zone width (SZW) [8-10]. The SZW was measured at the middle and the quarters of specimen thickness from specimen surface for each specimen. The mean value is calculated for every portion and indicated as a function of pulse duration in Fig. 8. This result well corresponds to the dynamic fracture toughness shown in Fig. 7. So, the result shown in Fig. 8 can provide the evidence for the experimental results of the dynamic fracture toughness shown in Fig. 7.

![Fig. 7. Dynamic fracture toughness of specimens 10 mm and 3 mm thickness.](image)

![Fig. 8. The stretched zone width as a function of pulse duration.](image)

![Fig. 9. The dominant void site ahead of the crack tip for specimen 10 mm thickness; a) 20 μs pulse duration; b) 40 μs pulse duration and c) 80 μs pulse duration.](image)

3.2. Dimple Fracture

Morphological features of fracture surfaces under the short pulse loading were examined by a scanning electron microscope (SEM). The microscopic fracture surfaces under impact loading are shown in Figs. 9 and 10. The fractographs indicate that dimples cover the whole fracture surface. Prudential observation reveals a single large void or a large void created by coalescence of small voids exists ahead of the crack tip. Close-up observation is
shown in Fig. 11. At the bottom, a secondary particle is separated into two. The element analysis by an X-ray micro-analyzer showed secondary particles of Zn and Mg inside the large void.

After a stress intensity amplitude slightly smaller than the dynamic fracture toughness is applied to a specimen, the specimen is sectioned along the middle plane parallel to the specimen surface. The sectioning of the specimen enables observation of voids nucleated ahead of the crack tip as shown in Fig. 12. The crack tip is at the center bottom of figure. Ahead of the crack tip, several voids are nucleated at inclusions. It should be noted that coalescence of the crack tip and the voids seems far from occurrence.

To examine the dominant void, the dominant void size and its distance from the crack tip were measured on the fractographs and plotted as a function of stress intensity pulse duration in Figs. 13 and 14. The experimental results are scattered in a wide range. This wide scattering reflects the randomness in the inclusion size and its spatial distribution. If the average value for each pulse duration is taken as shown in Figs. 13 and 14, it is seen that the void nucleation site of the dominant void is independent of pulse duration. Because the voids are nucleated at inclusion, as shown in Fig. 12, the nucleation site must depend only on spacing of inclusions ahead of the crack tip. In other word, the inclusion distribution density in the specimen. The dominant void size slightly depends on the pulse duration as shown in Fig. 13. The size is around 40 μm of 80 μs durations, and increases very slightly as the duration decreases to 40 μs, whereas the size decreases to around 32 μm, for the duration of 20 μs.

4. NUMERICAL ANALYSIS AND DISCUSSION

The finite-element code ANSYSTM was used for a numerical stress and strain analysis. A dynamic elastic-plastic stress analysis was carried out under a plane strain and a plane stress condition to examine the tri-axial stress conditions ahead of the crack tip. Two-dimensional mesh models were generated for three kinds of specimen geometries as shown in Fig. 2. A half of the model is shown in Fig. 15 (a) and fine meshes are used for the crack tip region as shown in Fig. 15 (b). A six-node triangle meshes are used for the far field from the crack tip and singular meshes are used for the crack tip region. The crack tip mesh size is one four-hundredth of the crack length. Applied loads to three kinds of specimens were determined, so that the loads would generate the same amplitude 25 MPa√m of the stress intensity pulses for three specimen geometries in elastic analyses.

Plastic zones ahead of the crack tip under the plane strain condition are shown for the 180 mm and the 50 mm long specimen in Figs. 16 and 17. Because visco-plastic properties are not taken into the consideration in analysis, the same size of the plastic zone is generated. The plastic zone under the plane stress condition is shown in Fig. 18. The comparison between the plastic zones in Figs. 17 and 18 reveals that the much larger plastic zone is developed under the plane stress condition.
Fig. 12. The development of void at the inclusion site ahead of the crack tip.

Fig. 13. The dominant void distance as a function of pulse duration.

Fig. 14. The dominant void size as a function of pulse duration.

For the 180 mm long specimen, the mean of the normal stress components, namely the hydrostatic stress on the crack line is plotted as a function of distance from the crack tip in Figs. 19 and 20. Under the plane strain condition shown in Fig. 19, the hydrostatic stress increases with distance from the crack tip and reaches the peak at the position 75 μm far from the crack tip. On the other hand, under the plane stress condition in Fig. 20, the hy-
Effect of Loading Rate on Dimple Fracture

Fig. 16. The plastic zones size as a strain under the stress intensity pulse of 80 μs duration at 165 μs after impact loading (plane strain condition).

Fig. 17. The plastic zones size as a strain under the stress intensity pulse of 20 μs duration at 40 μs after impact loading (plane stress condition).

drostatic stress increases with distance up to 350 MPa as the distance from the crack tip increases to 50 μm and becomes constant over the range from 50 μm to 150 μm far from the crack tip.

The inclusion spacing in the material used in the experiment is around 100 μm [1]. In plane stress condition, the hydrostatic stress is almost constant within the region over 50 μm to 150 μm ahead of the crack tip. If the inclusion exists 100 μm ahead of the crack tip, a void can be assentingly nucleated at the inclusion site. Under the plane strain condition, the hydrostatic stress reaches the peak, 1000 MPa at the position 75 μm far from the crack tip and decreases to 930 MPa at the void nucleation site, 110 μm ahead of the crack tip. It can be interpreted from this result that the existence of the inclusion is so domin-

Fig. 18. The plastic zones size as a strain under the stress intensity pulse of 80 μs duration at 165 μs after impact loading (plane stress condition).

Fig. 19. Hydrostatic stress as a function of distance from a crack tip (plane strain condition).

nant for the void nucleation that it could overwhelm the small difference 70 MPa in the hydrostatic stress. The magnitude under the plane strain condition is much higher than under the plane stress condition. Therefore, a void can be nucleated under a lower stress intensity level under the plane strain condition than under the plane stress condition as expected by experimental results [2, 3]. The Von Misses equivalent strain contours inside the plastic zone are also shown for both the stress conditions in Figs.16 and 17. The strain is much higher for the plane stress condition than for the plane strain condition. Because the obtained experimental results indicate that the dynamic fracture toughness is apparently lower under the plane strain condition than that for the thin specimen weakly dominated by the plane stress condition, the strain does not seem to play a significant role on the void nucleation and the growth process in this experimental conditions.

The FEM analysis provided no difference in the crack tip plasticity for three specimen geometries when they
were subjected to the same amplitude of the dynamic stress intensity, because the FEM code does not take into account of visco-plastic behaviors of the material. The experimental results [11] of a loading rate effect on mechanical properties of the 7075-T73 aluminum alloy showed that this alloy was substantially not susceptible against the strain rate up to 10^5/s. The FEM analysis indicates that the strain rate at the crack tip under the plane strain condition is around 2.8×10^3/s as seen in Fig 16 and 17. However, the dynamic fracture toughness significantly increases as the duration of the stress intensity pulse decreases from 40 to 20 µs. The SEM observation shown in Figs. 9 and 10 indicate that the microscopic morphological features of the fracture surfaces are identical under 20, 40 and 80 µs stress intensity pulse durations. The dimples cover the whole fracture surface and fine voids are nucleated as the void sheet to connect the crack tip and a dominant void. This suggests that the same fracture mechanism takes place under all the durations of the stress intensity pulses. On the other hand, the dynamic fracture toughness remarkably increases under the 20 µs pulse duration as shown in Fig. 7.

To explain the tremendous increase in the dynamic fracture toughness as the duration of the stress intensity pulse decreases to 20 µs, visco-plastic behavior in the plastic deformation near the crack tip must be taken into consideration. In other words, under a very fast loading rate such as the 20 µs stress intensity pulse, enhancement of the yield strength and the flow stress may reduce the plastic deformation ahead of the crack tip and delay the nucleation and the growth of voids. Also, the traveling time of the plastic stress wave cannot be long enough for the wave to spread near the crack tip fully. This may result in the intensive plastic deformation adjacent of the crack tip and a very wide SZW as shown in Fig. 8. So, visco-plastic behavior described above must be considered to understand the dynamic fracture toughness under the short stress intensity pulse.

5. CONCLUSIONS

In this work, the dynamic fracture toughness tests using a single stress intensity pulse were carried out for 7075-T651 aluminum alloy specimens of which the thicknesses were 10 and 3 mm. In the thick specimen, the plane strain condition prevails and quasi-plane stress condition prevails in the thin specimen. The obtained conclusions are as follows:

(1) The dynamic fracture toughness remarkably increased as the pulse duration decreased to 20 µs.
(2) The hydrostatic stress ahead of the crack tip can account for the experimental results that the void nucleation site is independent of the stress condition such as the plane strain and plane stress. The nucleation site is significantly associated with the inclusion spacing. The dominant void size decreased when the pulse duration decreased to 20 µs.
(3) The fast loading rate effect on dynamic fracture toughness suggests the visco-plastic behaviors ahead of the crack tip, although it is reported that the mechanical properties of the 7075 aluminum alloy are substantially not susceptible against the strain rate up to 10^5/s.

REFERENCES