n-3系多価不飽和脂肪酸の摂取基準の考え方

江崎治*1, 佐藤真一2, 窪野昌信3
三宅吉博4, 三戸夏子1, 梅澤光政5

(2005年5月25日受付: 2005年10月20日受理)

要旨：日本人のn-3系多価不飽和脂肪酸（以下n-3系脂肪酸と略す）の摂取基準策定（2005年版）に用いた論文をエビデンステーブル（表）として提示し、策定の基本的な考え方を詳しく述べた。n-3系脂肪酸は一定量以下の摂取量で皮膚炎、成長障害が認められる有効量であるので、下限の設定（最低必要量）が必要である。しかし、報告症例が少なく、一定量以下の摂取量を求めることができないため、摂取量の中央値で表される目安量を用いた。すなわち、大部分の日本人では皮膚炎は認められていないのでは、日本人の各年齢階層における男女別の年齢別のn-3系脂肪酸摂取量の中央値を日本人の大多数で虚血性症状が認められない十分な量と考え、目安量として、このように安全幅が広く設定されているため、実際の摂取量が目安量より少数でも欠乏症状はあらわれないと考えられる。n-3系脂肪酸を多く摂取すると、虚血性心疾患罹患が少なくなることを示す欧米の報告が多い。しかし、現在の日本人のn-3系脂肪酸摂取量の中央値は、欧米人の検討成績の中で、虚血性心疾患罹患率の最も低い、最高分位のn-3系脂肪酸摂取量のグループの中央値よりも多い。このため、日本人のn-3系脂肪酸摂取量の中央値程度を摂取していれば、虚血性心疾患罹患率を十分下げることができると考えられる。そこで、18歳以上に対し、n-3系脂肪酸摂取量の中央値を、目標量（生活習慣病予防を目的とした食事摂取基準の一つ）の下限と設定した。設定された18歳以上の目標値は2.0-2.9 g/day以上となる。この値は必須脂肪酸としての目安量と一致するため、18歳以上については目標値のみの設定となっている。n-3系脂肪酸を多く摂取した場合の栄養についても検討した。出血時間の延長、LDLコレステロール値の増加が多く報告されているが、臨床的に問題となる出血性の増加は報告されていないし、血栓性心疾患罹患率が増加したことを示す報告もない。このため、今回の策定では、目標量の上限値設定は行わなかった。しかしながら、日本人のn-3系脂肪酸摂取量である魚介類には、水銀、カドニウムなどの重金属、ダイオキシン、PCBなどの環境汚染物質が微量ながら含まれる。食事摂取基準では、有害物質の摂取量について取り扱っていないため、これらの影響については考慮されていない。本稿の終了にあたり、本稿では水銀摂取の影響についてエビデンスの収集を行い、妊娠国民摂取する場合の注意点についても言及した。

キーワード：食事摂取基準、n-3系多価不飽和脂肪酸、魚、虚血性心疾患、水銀

日本人の食事摂取基準（2005年版）では、n-3系脂肪酸は必須脂肪酸であるため目標量が17歳以下に、虚血性心疾患予防のため目標量が18歳以上に策定された。目安量、目標量の設定に際し、平成13年国民栄養調査の栄養データベースから計算された摂取量の性別、年齢階層別中央値（50パーセンタイル値）が用いられた。このため、18歳以上の目標値は2.0-2.9 g/day以上に設定された（表1）。前回の第6次改定では総脂肪酸摂取とn-3系脂肪酸摂取量との比率でn-3系脂肪酸の摂取量が示されていたが、今回の改定では下限値を、絶対量（g/day）で示した点が、大幅な改定となっている。

本稿では日本人のn-3系脂肪酸の摂取基準策定に用いられた論文を表（エビデンステーブル）として提示し、策定の基本概念について詳しく述べた。PubMedから適当なkey wordを用いて選択した論文の中から、さらに、食事摂取基準策定に関する論文を選び出し、表としてまとめている。また、魚に含まれる水銀の安全性についての表を追加した。2002年までのデータを中
表 1 n-3系脂肪酸の摂取基準（g/日）

<table>
<thead>
<tr>
<th>年齢</th>
<th>男性</th>
<th></th>
<th></th>
<th>女性</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5 (月)</td>
<td>0.9</td>
<td>-</td>
<td>0.9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6-11 (月)</td>
<td>1.0</td>
<td>-</td>
<td>1.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1-2 (歳)</td>
<td>1.1</td>
<td>-</td>
<td>1.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3-5 (歳)</td>
<td>1.5</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6-7 (歳)</td>
<td>1.6</td>
<td>-</td>
<td>1.6</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8-9 (歳)</td>
<td>1.9</td>
<td>-</td>
<td>2.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10-11 (歳)</td>
<td>2.1</td>
<td>-</td>
<td>2.1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>12-14 (歳)</td>
<td>2.6</td>
<td>-</td>
<td>2.1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>15-17 (歳)</td>
<td>2.8</td>
<td>-</td>
<td>2.3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>妊婦</td>
<td>2.1</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>授乳婦</td>
<td>2.4</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n-3系脂肪酸：C18:3, C18:4, C20:4, C20:5, C21:5, C22:6。

注1：本項目は、すべての日本人において皮膚炎は認められていないので、日本人の各年齢階層における男女別にみたn-3系脂肪酸摂取量の中央値を日本人の大多数で欠乏症状が認められない十分な量と考え、目標量とした。ただし、皮膚炎、成長障害の予防という観点での摂取の設定の結果は不十分であり、日本人よりも摂取量の少ない欧米人でも明らかな障害が認められていないことから、実際の摂取量はこの値より低くとも症候が見られないと思われる。目標量には推定平均基準量と定める結果を考慮した。目標量はすべての年齢階層に当てはまるが、18歳以上では、より根拠の明確な目標量と同じ値になるため、目標量でなく、目標量を用いる。

18歳以上のn-3系脂肪酸摂取量には臨床的血性疾患予防のため、目標量が設定されている。目標量とは、疾病（もとなら生活習慣病の罹患率、死亡率が少なくできると考えられる摂取量である。

n-3系脂肪酸の摂取基準は、

比（またはエネルギー比率）でなく、

絶対量（g/day）で表される

前回の第6次改定中、「飽和脂肪酸（S）、不飽和脂肪酸（M）、多価不飽和脂肪酸（P）の望ましい摂取割合は3つ目をやるとする。n-6系多価不飽和脂肪酸とn-3系多価不飽和脂肪酸の比は、健康人では4:1程度を目安とする。」と記載されているように、各脂肪酸の比率で各脂肪酸の摂取目安が示されていたが、今回は範囲で示され、単位もそれぞれの脂肪酸で異なる。

ある栄養素の摂取基準をどの単位で表すとよいのか、栄養素の生理機能とその作用機序による。n-3系脂肪酸は、血中中性脂肪の低下、不整脈の発生防止、血管内皮細胞の機能改善、血栓生成防止作用等いろいろな生理作用を介して生活習慣病予防効果を示す。これらの作用はn-6系脂肪酸との競争だけでなく、n-3系脂肪酸の自己の生理作用も考えられる。これらのため、n-6/n-3ではなく、n-3系脂肪酸自体の最適摂取量、すなわち、絶対量（たとえばg/day）で表すべきである。また、必須脂肪酸の意味からも、エネルギー摂取量に依存しない絶対量で表すべきである。一方、飽和脂肪酸、不飽和脂肪酸、n-6系脂肪酸は摂取量が多く、特に上限に関しては、エネルギー摂取としての意義を考慮する必要があり、エネルギー比率で表した方が良い。すなわち、エネルギー摂取量が増加した場合、それに連動して摂取した方がこれらの脂肪酸は摂取しやすい。

絶対量で表すメリットは他にもある。特定の食品に多く含まれている栄養素、たとえば、コレステロールやn-3系脂肪酸の場合、絶対量で表した方が実際の食事指導で使用しやすい。総エネルギー比率で表すと、すべての摂取した食品の摂取量から総エネルギー摂取量を求めて、それから目的とする栄養素のエネルギー比率を計算

する必要がある。しかし、絶対量で表す場合には、摂取したこれらの栄養素を多く含む食品摂取量を調べるだけで、大体の摂取量が把握できる。

摂取基準は個々の脂肪酸ごとに 表すべきか、すべてをまとめ n-3 系脂肪酸として表すべきか？

n-3系脂肪酸には、食用調理油由来のα-リノレン酸と魚由来のEPA (icosapentaenoic acid), DHA (docosahexaenoic acid)やDPA (docosapentaenoic acid)などがある。α-リノレン酸は大豆油、菜種油には8-11％、紫蘇油には50％くらい含まれ、EPA, DHAやDPAはマグロ、サニマ、ウナギなど脂の多い魚に多く含まれる。

現在、日本人のα-リノレン酸摂取量の中央値は男性1.58g/day, 女性1.37g/dayで総 n-3系脂肪酸摂取量の約60％を占める。組織に入ったα-リノレン酸は一部EPAやDHAに変換される5)。また、EPAはDHAに変換され、逆にDHAがEPAに変換されたりするための酵素がヒトにはあるが、細胞内では複雑な生化学反応により多くの物質が生まれ、消失していると考えられる。どの母ポライトが重要な生理機能を示すのかかかっていない。

摂取される個々の脂肪酸は生理効果が異なるため6)，それぞれの脂肪酸での摂取基準を定めることは理論的である。しかし、個々の脂肪酸摂取基準による疾病の罹患率を調えた大規模観察研究は少ない。血中のα-リノレン酸、EPA、DHAやDPAの濃度を測定することで、大体のα-リノレン酸や鱼の摂取量を推定することはできるが、先ほど述べたように、摂取された個々の脂肪酸は相互通化されるため、摂取された脂肪酸値を正しく推定することは困難である。このため、2005年版では、個々の脂肪酸ではなくすべてをまとめる n-3系脂肪酸として、摂取基準を定めた。

n-3系脂肪酸の欠乏症

n-3系脂肪酸欠乏症の存在は、n-3系脂肪酸に目安量を設定した理由の一つである。小腸切除や脳障害等のため経口摂取のできない患者の中で、n-6系脂肪酸の摂取量は著しく維持されていたが、n-3系脂肪酸摂取が非常に少なく、脂質皮膚炎、出性皮膚炎、結節性皮膚炎、または成長障害を生じていた患者に、n-3系脂肪酸（α-リノレン酸と魚油）を与えても報告されていない（表2）。血中のn-3系脂肪酸比率の増加に伴い、皮膚症状は、0.2-0.3エネルギー％のn-3系脂肪酸投与により改善され7)，体重の増加は、1.3エネルギー％のn-3系脂肪酸投与により認められている9)。しかし、多くの

<table>
<thead>
<tr>
<th>表 2 n-3系脂肪酸の欠乏症</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>発表年</td>
<td>著者国</td>
<td>対象/方法</td>
<td>結果</td>
<td>文献番号</td>
</tr>
<tr>
<td>1982</td>
<td>Holman RT 米国</td>
<td>小腸切除した6歳の女性が、5ヶ月間リノール酸が不十分でα-リノレン酸の少ない中心静脈栄養を受け、四肢の感染病、肺部が広がっている胃腸栄養中の女性に、10-20mL/dayの肝油+20mL/dayの大豆液を与え、症状の変化を観察。</td>
<td>α-リノレン酸（0.54エネルギー％/day）を多く含む卵黄を与えたところ、これらの症状が改善された。</td>
<td>86</td>
</tr>
<tr>
<td>1987</td>
<td>Bjerve KS ノルウェー</td>
<td>リノール酸摂取は比較的奨励されているがα-リノレン酸欠乏が生じ、皮膚症状が発症している胃腸栄養中の女性に、10-20mL/dayの肝油+20mL/dayの大豆液を与え、症状の変化を観察。</td>
<td>病状は1週間で改善したため、n-3系脂肪酸摂取の際、報告されているデータを参照。</td>
<td>6</td>
</tr>
<tr>
<td>1988</td>
<td>Bjerve KS ノルウェー</td>
<td>7歳女性が胃腸栄養でリノール酸（16エネルギー％），α-リノレン酸（0.07エネルギー％）を22カ月間摂取していたが、体重の増加は認められなかった。その後n-3系脂肪酸を0.74エネルギー％，1.3エネルギー％と段階的に増加させ、その後の体重の変化を見た。</td>
<td>0.74エネルギー％のn-3系脂肪酸（シソ油+肝油）では体重の増加は0.64kg/月で十分であったが、n-3系脂肪酸を1.1-2.3%に増加させると体重増加は0.84kg/月に増加した。</td>
<td>8</td>
</tr>
<tr>
<td>1989</td>
<td>Bjerve KS ノルウェー</td>
<td>腸障害のため胃腸栄養中n-3系脂肪酸の欠乏が発症した9症例をまとめ、n-3系脂肪酸は0.02-0.09エネルギー％と少量摂取されておらず、その点皮膚、出血性皮膚炎、結節性出血性皮膚炎、成長障害の治療効果を観察。</td>
<td>0.2-0.3エネルギー％のn-3系脂肪酸（肝油+大豆油+α-リノレン酸、またはシソ油+肝油）の摂取により症状は改善。</td>
<td>7</td>
</tr>
<tr>
<td>1989</td>
<td>Bjerve KS ノルウェー</td>
<td>長期間の胃腸栄養で血中n-3系脂肪酸の減少を生じていたが、n-6系脂肪酸の摂取が正常な3人の患者に、α-リノレン酸を0.12mL/day, 0.04mL/day, 薬剤師魚油（EPA-ω3）を0.5mL/day, および2.5mL/dayをそれぞれ2週間ごとに4段階で2週間間隔で皮膚症状、リノール酸の薬剤、血中の脂肪酸変化を観察。</td>
<td>1エネルギー％（900mg/day）のα-リノレン酸、または0.4エネルギー％（350-400mg）の魚油由来のn-3系脂肪酸により、血中n-3系脂肪酸量が正常化した。皮膚症状は一般に投与後1ヶ月後に改善を認めだが、薬剤が治療するには6ヶ月かかった。</td>
<td>87</td>
</tr>
<tr>
<td>1994</td>
<td>Cederholm TE スウェーデン</td>
<td>高齢者/非がん患者で、栄養不良（PEM）を示す20名中、血中脂肪酸組成と雌ホルモン反応（DCH）との相関を調査。さらに、40 kcal/dayの食事を3ヶ月間投与し影響を調べた。</td>
<td>血中n-3系脂肪酸の減少は、皮膚アレルギー過敏症反応の増加（雌剤）と相関した。n-6系脂肪酸は失われます。</td>
<td>88</td>
</tr>
</tbody>
</table>
表 3 n-3系脂肪酸摂取量と

<table>
<thead>
<tr>
<th>報告年</th>
<th>研究者国</th>
<th>平均観察期間（年）</th>
<th>調査方法と結果</th>
<th>n-3系脂肪酸摂取量</th>
<th>対象者数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>Dolecek TA</td>
<td>米国</td>
<td>虚血性心疾患の発症リスクをもつ35-57歳の男性を対象として、24時間思い出法により食物摂取を調査した、末死発生率をフォロー（Multiple Risk Factor Intervention Trial [MRFIT]）。</td>
<td>食事中の EPA＋DHA量 g</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.153</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.664</td>
</tr>
<tr>
<td>2000</td>
<td>Gillum RF</td>
<td>米国</td>
<td>8,825人を対象に3か月間の食品摂取頻度調査を行い、魚の摂取量を推定。その後終了時数をフォロー（National Health and Nutrition Examination Survey [NHANES]）。</td>
<td>魚の摂取量 0回/週</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>魚の摂取量 1回未満/週</td>
</tr>
<tr>
<td>18.8年</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>魚の摂取量 1回/週</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>魚の摂取量 1回以上/週</td>
</tr>
<tr>
<td>2002</td>
<td>Albert CM</td>
<td>米国</td>
<td>健康な男性（内科医）を追跡調査したPhysicians' Health Studyの中で、虚血性死を合併した男性（84人）を対象として、n-3系脂肪酸を摂取した場合、摂取前値（目標値）を示した。</td>
<td>血中n-3系脂肪酸%</td>
<td>3.58 (2.12-4.42)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>血中n-3系脂肪酸%</td>
</tr>
<tr>
<td>17年</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>血中n-3系脂肪酸%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>血中n-3系脂肪酸%</td>
</tr>
</tbody>
</table>

研究ではα-リノール酸と魚油の両方が投与されているため、症状改善効果がどの脂肪酸によるものか明らかでない。このため、2005年版では、α-リノール酸と魚油の両方を必須脂肪酸として扱い、両方の脂肪酸を併せたn-3系脂肪酸として、摂取目標（目安量）を示した。

ラットの研究からは、脳を機能的にn-3系脂肪酸が必須であることを示す報告があり、ヒトでもn-3系脂肪酸摂取量が非常に少ない場合や脳機能障害が生じる可能性がある。しかしながら、少なくない摂取量でのヒトでの脳機能への影響については調べられていないため、今回検討は行えなかった。

n-3系脂肪酸の疾患予防効果

A. 死亡率

欧米の大規模観察研究が3報ある（表3）。この研究も魚を摂取した方が、死亡率が低下することを示しているが、日本人が平均的に摂取している魚の量よりも、かなり少ない量での検討である。全血中でのEPA+DHA+DPA%（魚の摂取量を反映）を比較した研究では、最大4分位（低い群から高い群)に分けた場合、最も高い群の6.87%の群は、ほとんど魚を食べない群（3.58%）と比べて、90%も死亡率（突然死）が低下していた（図1）。日本人の血中リン脂質中のEPA+DHA+DPA%の平均は11.6%、血漿中のEPA+

図 1 血中n-3系脂肪酸比率（EPA＋DHA＋DPA）による突然死の相対危険（Physician's Health Study[11]）

40-84歳の健常男性内科医22,071人を1982年に登録した。その後17年間に心筋梗塞によると思われるとげ死94例死亡例が認められた。年齢、喫煙のマッチした健常例184人の1982年の全血液中のEPA＋DHA＋DPA比率の関連を調べた。11項目の補正項目には、年齢、喫煙、血圧、アスピリン服用、ベータカロチンの服用、BMI、糖尿病、高血圧、血中コレステロール高値の既往、飲酒量、運動量、心筋梗塞の家族歴が追加されている（p=0.07）。13項目の補正項目には、11項目の補正項目に加えてトランス型脂肪酸と一価不飽和脂肪酸の血中レベルの2項目が追加されている（p=0.007）。
DHA+DPA%平均値は11.8%と、この研究の最大4分位の6.87%よりもかなり高い。実際の魚の摂取量からもこの違いは明白である。魚の摂取量の最大4分位は1回以上/週であるが、日本人は魚を平均94 g/day摂取している13。これらの結果は、現在の平均的な日本人の魚摂取量が欧米の魚摂取量よりもかなり多いことを意味する。しかし、日本人の中で、より多く魚を摂取すると、より死亡率が低下するかどうかは明らかではない。

介入研究でも、n-3系脂肪酸を多く摂取した方が、総死亡率の低下が認められている（表4）。イタリアで行われた2次予防の介入研究、GISSI Studyでは、心筋梗塞既往者（5,666人）に約1 g/dayのn-3系脂肪酸（0.3 g/day EPA+0.6 g/day DHA）をカプセルで摂取したところ、摂取しない群に比較し、16%の死亡率の減少が認められた14。フランスで行われた2次予防の介入研究、Lyon Diet Heart Studyでは、心筋梗塞既往者（302人）にα-リノレン酸を含む地中海式食事をすすめたところ、α-リノレン酸の摂取量が1.8 g/dayに増加し、通常食群（0.7 g/dayのα-リノレン酸の摂取量）に比較し、総死亡率の40％の減少が認められた15。

B. 虚血性心疾患

魚介類、魚油、やn-3系脂肪酸エチルエステルの摂取が多くと虚血性心疾患死亡者数が減少することが多くの研究で示されている（表5）。1999年の観察研究のメタアナリシスでも、ハイリスクグループ（喫煙、高血压、高コレステロール血症の人）の人が、魚を40-60 g/day摂取すると虚血性心疾患死亡リスクが40-60％低下することが示されている16。日本人の喫煙率は男性52％、女性15％（2001年）で日本人の男性の多くはハイリスクグループに属する。ハワイの日系人を対象にした研究でも、タバコを30本/day以上吸う男性では、魚を週2回以上摂取する群はほとんど摂取しない群に比べて、心筋梗塞死亡の相対危険率が50％も低下していた17。Nurses' Health Studyでも、魚の摂取量が5回以上/週（1回の魚の摂取量は168-224 g）の群ではほとんど食べない群に比較し、16年間の心筋梗塞死亡の相対危険が45％も低下していた18（図2）。この研究で重要なことは、用量依存性で、摂取量が多いほどほど、死亡率の低下を示したことである。すなわち、これ以上の摂取量（たとえば日本人の摂取量の中央値）の人はオメガ3の最大摂取量群の人よりも心筋梗塞死亡が少ないことを示唆する。一方でいくつかの検討成績において虚血性心疾患の予防効果が認められないとする報告がある。その理由として、魚介類摂取量の比較的多い地域においてはその予防効果（摂取量付加によるさらなる予防効果）が認められないのではないかと考えられている。

いくつかの観察研究で魚の摂取量や魚油の摂取と同様、α-リノレン酸の摂取も虚血性心疾患に予防的に働くと
表 4 n-3 系脂肪酸摂取量と総死亡率（介入研究）

<table>
<thead>
<tr>
<th>発表年</th>
<th>著者国</th>
<th>觀察期間 (年)</th>
<th>試験食品種類</th>
<th>対象者数</th>
<th>平均年齢 (±SD)</th>
<th>心筋梗塞の既往</th>
<th>総死亡者数</th>
<th>総死亡率 (%)</th>
<th>文献番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>Burr ML イギリス</td>
<td>2</td>
<td>介入群：油の多い魚を200-400 g 2</td>
<td>1015</td>
<td>56.7</td>
<td>19</td>
<td>94</td>
<td>0.7 (0.6-0.9)</td>
<td>128</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>Long GC イギリス</td>
<td>2</td>
<td>介入群：魚油とポリオレイン酸</td>
<td>60</td>
<td>65.0±7.3</td>
<td>23.3</td>
<td>3</td>
<td>1.0 (0.2-4.8)</td>
<td>129</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>Johansen O ノルウェー</td>
<td>0.5</td>
<td>介入群：魚油+DHA</td>
<td>196</td>
<td>60.3±9.3</td>
<td>51</td>
<td>1</td>
<td>1</td>
<td>130</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>de Lorgeril M フランス</td>
<td>3.8</td>
<td>介入群：α-リンolen酸</td>
<td>302</td>
<td>53.5±10</td>
<td>100</td>
<td>14</td>
<td>0.64 (0.21-0.96)</td>
<td>131</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>GISSI イタリア</td>
<td>3.5</td>
<td>介入群：魚油+DHA</td>
<td>5666</td>
<td>59.2</td>
<td>100</td>
<td>472</td>
<td>0.86 (0.76-0.97)</td>
<td>132</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Singh RB インド</td>
<td>2</td>
<td>介入群：α-リンolen酸</td>
<td>499</td>
<td>49</td>
<td>58</td>
<td>24</td>
<td>p=0.06</td>
<td>133</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

図 2 魚摂取頻度による心筋梗塞死亡の相対危険率（Nurses’ Health Study（NHS））

米国看護婦約8万人を1980年に登録しておき、食生活を含む生活習慣を定期的に調査し、16年間観察した。この間に484例の心筋梗塞による死亡が認められた。この間の魚摂取頻度における相対危険率の影響をCox proportional hazards modelを用いて調べた。13項目の補正項目には、年齢、時期、喫煙、BMI、アルコール飲酒、年齢別の状態、運動量、アスピリン服用の有無、総ビタミン剤、ビタミンE服用の有無、高血圧、高コレステロール血症、糖尿病の有無が含まれる（p=0.01）。16項目の補正項目には、さらに、トランス脂肪酸摂取量、多価不飽和脂肪酸/飽和脂肪酸摂取量、食物繊維の3項目が追加されている（p=0.01）。

する結果が示されている（表6）。たとえば、大規模観察研究Nurses’ Health Studyでは、α-リンolen酸を平均1.4 g/day摂取した群は平均0.7 g/day摂取した群に比べて、虚血性心疾患死亡の相対危険率は0.55に低下し、用量依存性があった16）。Health Professional Studyでも1エネルギー%のα-リンolen酸摂取の増加により、心筋梗塞発症の相対危険が0.41に低下している20）。しかしながら、関連がないとする報告もあり、その方法論（たとえば食事状況の把握方法）について問題が提起されている。魚油やEPA、DHAの摂取に比べて、α-リンolen酸の摂取については検討成績が少なく介入研究もないということで、証拠のレベルは魚油に比べて劣る。

介入研究ではそのほとんどにおいて虚血性心疾患の既往者、あるいは動脈硬化巣をもつ者に対して行われて
表 5 魚摂取量と虚血性心疾患（観察研究）

<table>
<thead>
<tr>
<th>発表年</th>
<th>著者国</th>
<th>対象・方法</th>
<th>結果</th>
<th>文献番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>Shekelle RB 米国</td>
<td>死亡、男性</td>
<td>魚を全く摂取しない人の方が、少なくとも週1回以上魚を摂取する人より死亡率が高い。</td>
<td>95</td>
</tr>
<tr>
<td>1985</td>
<td>Krombouh D オランダ</td>
<td>死亡、20年追跡、男性</td>
<td>魚を全く摂取しない人の方が、少なくとも週1回以上魚を摂取する人より死亡率が高い。</td>
<td>96</td>
</tr>
<tr>
<td>1995</td>
<td>Ascherio A 米国</td>
<td>Health Professionals' Follow-up Study、男性、死</td>
<td>魚の摂取、n-3系脂肪酸摂取とともに、そのCHD指標とも関連を認めず。</td>
<td>97</td>
</tr>
<tr>
<td>1995</td>
<td>Krombouh D オランダ</td>
<td>死亡、男性</td>
<td>魚を全く摂取しない人の方が、少なくとも週1回以上魚を摂取する人より死亡率が高い。</td>
<td>98</td>
</tr>
<tr>
<td>1996</td>
<td>Krombouh D 7カ国研究</td>
<td>Seven Countries Study、25年間の虚血性心疾患による死亡と魚の摂取量の比較。</td>
<td>魚の摂取の関連はあるが、他の危険因子（鮑毛脂質摂取、プラナロール摂取、喫煙）を調整すると有意差なし。</td>
<td>99</td>
</tr>
<tr>
<td>1996</td>
<td>Rodriguez BL 米国</td>
<td>The Honolulu Heart Study、ハワイの日系人対象、心筋梗塞死亡検討。</td>
<td>タバコを30本/day以上吸う群では、魚を週2回以上摂取する群はほとんど摂取しない群に対して、心筋梗塞死亡の相対危険度が0.5（0.28-0.91）となった。</td>
<td>17</td>
</tr>
<tr>
<td>1997</td>
<td>Davigus ML 米国</td>
<td>死亡、30年追跡、男性</td>
<td>魚を全く摂取しない人に比べ、1日35g以上の魚を摂取する人の相対危険度は、虚血性心疾患で0.62、MIで0.35。</td>
<td>100</td>
</tr>
<tr>
<td>1999</td>
<td>Guillar E オーストリア+イスラエル</td>
<td>EURAMIC (the European Community Multicentre Study on Antioxidants, Myocardial Infarction, and Cancer of the Breast) Study、データコホート研究、脂質組成中のDHAを測定。</td>
<td>関連なし。ただし、死亡例を含まないことが関連を認めにくくした可能性を指摘している。</td>
<td>101</td>
</tr>
<tr>
<td>2001</td>
<td>Oomen CM 欧州</td>
<td>魚介類摂取の比較、フィンランド、イタリア、オランダでの検討。脂質の割合の多い魚と少ない魚に分けて検討。</td>
<td>脂質の多い魚の摂取は死亡リスクを0.66以下に下げた。脂質の少ない魚の摂取は有意に下げなかった。</td>
<td>102</td>
</tr>
<tr>
<td>2002</td>
<td>Hu FB 米国</td>
<td>Nurses' Health Study、死亡と非致死性心筋梗塞発症、女性対象。</td>
<td>虚血性心疾患による死亡の相対危険度は、魚を全く摂取しない人に比べ、1年100人で0.85、1年1回の摂取で0.81、週2回の摂取で0.69、週5回以上の摂取で0.66。最大5%の相対危険度は、虚血性心疾患死亡で0.55、非致死性心筋梗塞で0.73。</td>
<td>18</td>
</tr>
</tbody>
</table>

表 6 α-リノレン酸摂取量と虚血性心疾患（観察研究）

<table>
<thead>
<tr>
<th>発表年</th>
<th>著者国</th>
<th>対象・方法</th>
<th>結果</th>
<th>文献番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>Ascherio A 米国</td>
<td>Health Professional Study、FFQからの算出、男性、最大5分位での摂取量1.5g/day、最小5分位での摂取量0.8g/day。</td>
<td>α-リノレン酸の1%の増加の虚血性心筋梗塞発症に対する相対危険度は、0.41 (p for trend=0.01) だった。</td>
<td>20</td>
</tr>
<tr>
<td>1999</td>
<td>Hu FB 米国</td>
<td>Nurses Health Study、FFQからの算出、10年追跡結果、女性、最大5分位での摂取量1.4g/day、最小5分位での摂取量1.07g/day。</td>
<td>最大5分位の最小5分位に対する虚血性心疾患死亡の相対危険度は、0.55 (p for trend=0.01) だった。</td>
<td>19</td>
</tr>
<tr>
<td>2001</td>
<td>Oman CM オランダ</td>
<td>The Zutphen Elderly Study、追跡研究、667人の男性、64-84歳を10年間追跡調査、虚血性心疾患発症率を比較。</td>
<td>α-リノレン酸摂取量の有用性は認められなかった。関連を認めなかった説明として、α-リノレン酸とトランス型脂肪酸摂取に相関のあることが関連したためと考察している。</td>
<td>103</td>
</tr>
<tr>
<td>2001</td>
<td>Djourou L 米国</td>
<td>National Heart, Lung, and Blood Institute Famil-</td>
<td>α-リノレン酸摂取量を5分位の比率で計測、冠動脈疾患の有病率を比較すると、上位3つ年の比率で、男性40%、女性50-70%の低下を認めた。</td>
<td>104</td>
</tr>
<tr>
<td>2002</td>
<td>Viscoli F オランダ</td>
<td>The Zutphen Elderly Study、追跡研究、667人の男性、64-84歳を10年間追跡調査、虚血性心疾患発症率を比較。</td>
<td>α-リノレン酸摂取量の有用性は認められなかった。関連を認めなかった説明として、本研究における栄養調査方法の限界と考察している。</td>
<td>105</td>
</tr>
</tbody>
</table>

1 FFQ=Food frequency questionnaire.

いる（表7）。これらのうちの多くは、魚油のサプリメートの介入で、有効性を認めているものが多い。有効性が認められなかった研究は魚介類摂取量のもとが高い西ヨーロッパの研究を含むものである。ただし、比較的大きな介入研究や一次予防のための介入研究においては、その有効性を認めないとする報告もある。これらの研究をメタアナリシスした研究においては致死性心筋梗塞の相対危険度が0.8、致死性の心筋梗塞や虚血性心疾患死亡の相対危険度は0.7と計算されている21）。
表 7 n-3系脂肪酸摂取量と虚血性心疾患（介入研究）

<table>
<thead>
<tr>
<th>発表年</th>
<th>著者国</th>
<th>著者</th>
<th>対象・方法</th>
<th>結果</th>
<th>文献番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1968</td>
<td>ノルウェー</td>
<td>Natvig H</td>
<td>The Norwegian Vegetable Oil Experiment. 2 重盲研究RCT。50-59歳、男、3,000人以上、n-3系脂肪酸摂取量のない群、5.5gのα-リノレン酸（リシノール油10mL群）とサフラワー油10mL群。1年追跡。</td>
<td>リンゴ屑群、循環器病死者27例、全死亡43例、サフラワー油群、循環器病死者27例、全死亡45例。差無し、効果を認めなかった研究。</td>
<td>106</td>
</tr>
<tr>
<td>1994</td>
<td>英国</td>
<td>Burr ML</td>
<td>DART（the Diet And Reinfarction Trial）Study。心筋梗塞既往者、男、2年間追跡。魚油カプセル（900mgの EPA+DHA）摂取群を中心にしたpost hoc解析。</td>
<td>DARTでもたらされた魚の心臓保護効果は、n-3系脂肪酸によるものと考えられた。</td>
<td>107</td>
</tr>
<tr>
<td>1995</td>
<td>米国</td>
<td>Sacks FM</td>
<td>血管造影検査による評価。59人、2年間追跡。6g/dayのn-3系脂肪酸とオレイン酸を比較。</td>
<td>n-3系脂肪酸群の効果は、検出されず。</td>
<td>108</td>
</tr>
<tr>
<td>1996</td>
<td>カナダ</td>
<td>Erioland J</td>
<td>Coronary artery bypass grafting（CABG）患者。グラフトの閉塞で評価。610人。n-3系脂肪酸ジェリエンエステル3.4g/day。コントロール群と比較。</td>
<td>n-3系脂肪酸群の閉塞27%、コントロール群の閉塞33%（p<0.03）。</td>
<td>109</td>
</tr>
<tr>
<td>1997</td>
<td>インド</td>
<td>Cairns JA</td>
<td>Enoxaparin MaxEMA Prevention of Angioplasty Restenosis Study（EMAP）Study。 Percutaneous transluminal coronary angioplasty（PTCA）後の患者。1日5g魚油の介入研究。閉塞をエンドポイント。</td>
<td>全心イベント再発率は、魚油カプセルで25%、キチン油カプセルで26%、偽薬で35%。偽薬との差有意（p<0.01）。魚油カプセル併用群の再発率は特に大きい。α-リノレン酸の効果を認めめた研究。</td>
<td>110</td>
</tr>
<tr>
<td>1999</td>
<td>イスラエル</td>
<td>Singh RB</td>
<td>心筋梗塞を縄で入院した患者をランダムに3群に割りつ分。魚油カプセル（1.8g/dayの EPA+DHA配合）、キチン油カプセル（2.9g/dayのα-リノレン酸配合）と薬、1年間追跡。</td>
<td>全心イベント再発率は、魚油カプセルで25%、キチン油カプセルで26%、偽薬で35%。偽薬との差有意（p<0.01）。アスピリン併用群の再発率が特に大きい。α-リノレン酸の効果を認めめた研究。</td>
<td>111</td>
</tr>
<tr>
<td>2001</td>
<td>ドイツ</td>
<td>von Schacky C</td>
<td>血管造影検査による評価。223人、3年追跡。n-3系脂肪酸3g/dayを3ヶ月、1.5g/dayを21ヶ月。偽薬と比較。</td>
<td>有意に進展抑制、退縮（p=0.04）、臨床イベントも傾向（7対1、p=0.1）。</td>
<td>112</td>
</tr>
<tr>
<td>2002</td>
<td>オランダ</td>
<td>Nilsen DW</td>
<td>West/Nordic。心筋梗塞既往者。300人を1.5年追跡。3.5g/dayのDHA+EPAとコントロール群を比較。</td>
<td>n-3系脂肪酸群の効果は、検出されず、魚介類摂取の多い集団であることが検出されなかった原因として考察されている。</td>
<td>113</td>
</tr>
<tr>
<td>2002</td>
<td>オランダ</td>
<td>Berelwame WJ</td>
<td>The Mediterranean Alpha-Linolenic Enriched Groningen Dietary Intervention（MARGARIN）Study。循環器の多重リスクをもつ男124人と女158人にα-リノレン酸またはオレイン酸のどちらかを多マーカーを供給、2年追跡。</td>
<td>10年間に虚血性心疾患を発症するリスクは両群とも低下した（21%と25%）。循環器イベントは、α-リノレン酸群が1.8%、リノール酸群が5.7%（p=0.20）だった。</td>
<td>114</td>
</tr>
<tr>
<td>2002</td>
<td>イタリア</td>
<td>Marchioli R</td>
<td>Gruppo Italiano per lo Studio della Streptothrombina nell'Infarto Agugliano trial。発症研究。効果の大半が全死亡、突然死亡にとどまり、時間解析を実施。</td>
<td>n-3系脂肪酸群の効果は、全死亡で3ヶ月目から（相対危険度=0.59）、突然死は4ヶ月目から（相対危険度=0.47）検出された。</td>
<td>115</td>
</tr>
</tbody>
</table>

1 RCT=Randomized control trial.

表 8 n-3系脂肪酸摂取量と脳卒中（観察研究）

<table>
<thead>
<tr>
<th>発表年</th>
<th>著者国</th>
<th>著者</th>
<th>対象・方法</th>
<th>結果</th>
<th>文献番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>グリーンランド</td>
<td>Kromann N</td>
<td>マリンオイルフライド、グリーンランド原住民の断面調査。</td>
<td>n-3系脂肪酸の摂取が多いグリーンランド原住民で出血性脳卒中発症が多かった。</td>
<td>116</td>
</tr>
<tr>
<td>1994</td>
<td>オランダ</td>
<td>Keil O</td>
<td>Zutphen Study。脳卒中発症。</td>
<td>20g/day以上の魚を摂取する群では、20g未満の群に比べて、脳卒中発症の調整値を示しているデータが8.49（p<0.05）だった。特に、食用魚脳卒中。</td>
<td>117</td>
</tr>
<tr>
<td>1995</td>
<td>米国</td>
<td>Simon J</td>
<td>The Multiple Risk Factor Intervention Trial（MRFIT）血圧、血圧管理、脳卒中発症。</td>
<td>血圧中α-リノレン酸と脳卒中発症との間に負の関連を認めた。</td>
<td>118</td>
</tr>
<tr>
<td>1995</td>
<td>米国</td>
<td>Morris M</td>
<td>Physicians' Health Study。FFQ。脳卒中発症。男性。</td>
<td>男性において、魚の摂取と脳卒中発症との関連を認めなかった。</td>
<td>119</td>
</tr>
<tr>
<td>1996</td>
<td>米国</td>
<td>Orecia AJ</td>
<td>Chicago Western Electric Study。FFQ。脳卒中発症。男性。</td>
<td>男性において、魚の摂取と脳卒中発症との関連を認めなかった。</td>
<td>120</td>
</tr>
<tr>
<td>1996</td>
<td>米国</td>
<td>Gillum RF</td>
<td>National Health and Nutrition Examination Survey（NHANES）1 Epidemiologic Follow-up Study。脳卒中発症。</td>
<td>国民女性において、1週間に1回以上の魚を摂取する群では、全く魚を摂取しない群に比べて、脳卒中年齢調整発症率が半分であった。リスクが低い男性でもみられたが、男性ではみられなかった。</td>
<td>121</td>
</tr>
<tr>
<td>1999</td>
<td>米国</td>
<td>Zhang J</td>
<td>FAO・WHO（36カ国）国際比較研究。</td>
<td>魚介類摂取と全脳卒中との関連は、脳卒中の病型によ る違いのため、過小評価されている可能性について議論している。</td>
<td>122</td>
</tr>
<tr>
<td>2001</td>
<td>米国</td>
<td>Ioski H</td>
<td>Nurses' Health Study。FFQ。脳卒中死亡。女性のみ。</td>
<td>女性において、魚を摂取するほど、脳卒中死亡を抑え る傾向（p=0.06）を認めた。</td>
<td>23</td>
</tr>
</tbody>
</table>

1 FFQ=Food frequency questionnaire.
C. 腦卒中

脳卒中の観察研究は数があるものの、抑制効果があるとする研究、ないとする研究が半ばしている（表8）。
この理由として、脳梗塞を中心とする血栓性疾患に対しては予防効果があるとの研究、脳出血を中心とする出
血性疾患に対しては効果がない。その後に脳卒中全体と
した場合に効果がわずかに観察されているのではないかと考えられる。

脳梗塞に関しては、男性を対象としたHealth Professional

<table>
<thead>
<tr>
<th>表9 n-3系脂肪酸摂取量と肥満</th>
</tr>
</thead>
<tbody>
<tr>
<td>発表年</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1993</td>
</tr>
<tr>
<td>1996</td>
</tr>
<tr>
<td>1997</td>
</tr>
<tr>
<td>1998</td>
</tr>
<tr>
<td>1999</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>2001</td>
</tr>
<tr>
<td>2001</td>
</tr>
<tr>
<td>2001</td>
</tr>
<tr>
<td>2001</td>
</tr>
<tr>
<td>2002</td>
</tr>
</tbody>
</table>

総合食事の血清グルコース、ヘモグロビンA1c、総コレ

ステロール、体重、体格指標は、減少した。しかし、脂
油非摂取群でも同様な変化があった。尿中へのT-
デヒドロ-TXの排泄、有意に減少した。

魚油の摂取により血圧（収縮期、拡張期）の減少、血小板凝集の抑制が観察された。ベースラインのトリプシ

リソッド濃度の減少も観察された。

n-3系多価不飽和脂肪酸の摂取基準の考え方

131
表 10 n-3系脂肪酸摂取量とがん

<table>
<thead>
<tr>
<th>発表年</th>
<th>名前</th>
<th>研究タイプ</th>
<th>人数</th>
<th>性別</th>
<th>年齢</th>
<th>方法</th>
<th>結果因子</th>
<th>結果</th>
<th>文献番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>Willett WC</td>
<td>Nurses’ Health Study Cohort Study</td>
<td>88752</td>
<td>女性</td>
<td>34-59</td>
<td>6年</td>
<td>FFQ1</td>
<td>大腸がん</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≤59</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59-83</td>
<td>1.16 (0.67-1.99)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84-105</td>
<td>1.25 (0.73-2.13)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>106-133</td>
<td>1.13 (0.65-1.97)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≥134</td>
<td>1.77 (1.09-2.88)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>喉頭と喉頭</td>
<td><22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22-28</td>
<td>0.75 (0.46-1.22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29-40</td>
<td>0.99 (0.63-1.54)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41-64</td>
<td>0.47 (0.27-0.81)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≥65</td>
<td>0.56 (0.34-0.92)</td>
</tr>
<tr>
<td>1993</td>
<td>Giovannucci E</td>
<td>The Health Professionals Follow-up Study Cohort Study</td>
<td>47855</td>
<td>男性</td>
<td>40-75</td>
<td>14年</td>
<td>FFQ</td>
<td>前立腺進行</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>多様不飽和脂肪酸 (g/day)</td>
<td>8.0 Cases/年人</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.1 Cases/年人</td>
<td>1.0 (0.57-1.75)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.6 Cases/年人</td>
<td>0.62 (0.33-1.17)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.3 Cases/年人</td>
<td>0.71 (0.37-1.35)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.1 Cases/年人</td>
<td>0.64 (0.32-1.32)</td>
</tr>
<tr>
<td>1999</td>
<td>Holmes MD</td>
<td>Nurses’ Health Study Cohort Study</td>
<td>8879</td>
<td>女性</td>
<td>36-55</td>
<td>14年</td>
<td>FFQ</td>
<td>乳がん</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>多様不飽和脂肪酸 (g/day)</td>
<td>5% of energy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5% of energy</td>
<td>Cases: 2097</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5% of energy</td>
<td>Cases: 2097</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5% of energy</td>
<td>Cases: 2097</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5% of energy</td>
<td>Cases: 2097</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5% of energy</td>
<td>Cases: 2097</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5% of energy</td>
<td>Cases: 2097</td>
</tr>
<tr>
<td>2000</td>
<td>Hakim IA</td>
<td>症例対照研究</td>
<td>183</td>
<td>男性</td>
<td>症例群</td>
<td>≥30</td>
<td>3-d DR2 (皮膚と皮膚)</td>
<td>n-3系脂肪酸 (g/day)</td>
<td>≤0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>0.06 to ≤0.45</td>
<td>Cases: controls</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>0.45</td>
<td>Cases: controls</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≤8.3</td>
<td>Cases: controls</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>8.3 to ≤13.9</td>
<td>Cases: controls</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>13.9</td>
<td>Cases: controls</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n-3系脂肪酸 (g/day)</td>
<td>≤0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>0.01 to ≤0.06</td>
<td>Cases: controls</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>0.06</td>
<td>Cases: controls</td>
</tr>
</tbody>
</table>

*FFQ = Food frequency questionnaire, 3-d DR = 3 days dietary records.
D. 糖 満
n-3 系脂肪酸は他の脂肪酸に比較し、PPARα 活性化作用が強く、かつ、抗肥満作用が推定されるが、大規模観察研究や介入研究でこれを強く支持する報告はない（表9）。これにより、肥満症に摂取熱量や運動習慣の影響が大きく、日常摂取する n-3 系脂肪酸量では効果が認められないと考えられる。また、n-3 系脂肪酸の摂取が糖尿病発症を予防する報告もない。

E. が ん
n-3 系脂肪酸での報告は少なく、がんの種類によって異なる結果が得られている（表10）。扁平上皮がんの症例対照研究ではn-3 系脂肪酸摂取量1 日あたり0.06 g 以下に比べて、0.46 g 以上のオッズ比は0.71 であった250。
大腸がんでは、米国看護婦の大規模観察研究で、肉の摂取によりリスクが増加したが、魚と鶏肉の摂取によりリスクを減少した250。一方、乳がんでは魚由来の n-3 系脂肪酸は相対危険1.08 と軽度リスクを高めたが、α-リノレン酸はリスクを0.75 に減少した250。前立腺がんに関しては、進行がん（126件）では α-リノレン酸摂取は相対危険3.43 と有意にリスクを高めたが、初期がんを含む症例数を増やす（300 件）と相対危険は1.25 となり有意でなくなった250。前立腺進行がんに関しては、症例数を増やした研究が必要である。

F. 加齢黄疸変性症
加齢黄疸変性症は60 歳以上の高齢者に多くみられる疾患で、視力低下を来す。2001 年に EPA と DHA 摂取量が多いと加齢黄疸変性症の発症リスクを低下することが大規模観察研究により報告された。Nurses’ Health Study と Health Professional Study では、魚を週5 回以上摂取する群は月3 回以下摂取群に比べて、加齢黄疸変性症発症率の相対危険を0.65 に低下し、用量依存性であった250。症例対照比較研究では、EPA と DHA 摂取が加齢黄疸変性症と明らかに関連は認めなかったが、リノール酸の摂取量が少ない（5.5 g/day 以下）群において、魚を週2 回以上摂取する群は週1 回未満の摂取群に比べて、オッズ比は統計学的に有意ではないが0.6 に低下した250。

G. ストレス
日本から介入研究が3 報告されている（表11）。学外の DHA 投与群とコントロール群で比較し、介入群で血清ノルエピネフリンは低下したが、絵画求心不満テストでは明らかな変化は認められなかった251-253。

H. アレルギー性疾患
症例対照研究では、子どもの喘息およびアトピー性皮膚炎患者を対象としたオーストラリアの研究254 では、脂の多い魚の摂取量が多いと喘息の発症率が低下していた。アトピー性皮膚炎患者に関するノルウェーでの報告255 では、女性患者ではn-3/n-6 比に有意に低かったが、男性患者では差がなかった（表12）。しかし、大規模観察研究Nurses’ Health Study では、n-3 系脂肪酸の摂取量と喘息の発症率との関連は認められていない256。

アトピー性皮膚炎、またはアレルギー性喘息患者に対する介入研究（表13）では、15 研究報告中、11 の研究報告では有効は認められない257-259。他の四つの報告中、二つの報告では喘息およびアトピー性皮膚炎の症状の改善が認められている259,260。残り二つの報告の改善効果は明瞭ではない259,261。炎症性サイトカインやリコイドトリエン、リンパ球増殖反応に対して是有意に抑制することが報告されている259.

表11 n-3 系脂肪酸摂取量とストレス

| 年齢 | 研究 | 番号 | 方法 | 結果因子 | 結果 | 参照
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>Harazono T 日本 RCT</td>
<td></td>
<td>5</td>
<td>男性</td>
<td>19-30</td>
<td>3 月</td>
</tr>
<tr>
<td>17</td>
<td>女性</td>
<td>DHA</td>
<td>1.5-1.8 g/day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>男性</td>
<td>DHA</td>
<td>1.5-1.8 g/day</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 12 | 女性 | 對照群 | | | | | | 32
| 1998 | Harazono T 日本 RCT | | 15 | 男性 | 20-30 | 13 週 | FFQ* | 給食欲不満テスト | Groups | Start | End | Difference |
| 9 | 女性 | DHA | 1.5 g/day | | | | | Control (n=24) | 34.8±9.1 | 29.4±11.4 | -5.4±8.4 |
| 11 | 男性 | 對照群 | | | | | | DHA (n=22) | 33.5±12.0 | 33.8±13.3 | 0.3±11.0 |
| 13 | 女性 | 對照群 | | | | | | 33
| 1999 | Sawazakino 日本 RCT | | 4 | 男性 | 21-25 | 9 週 | FFQ | 血清ホルモン | Groups | Start | End | End |
| 3 | 女性 | DHA | 1.5 g/day | | | | | Epinephrine | Control (n=7) | 187±121 | 166±117 |
| 4 | 男性 | 對照群 | | | | | | DHA (n=7) | 197±140 | 224±156 |
| 3 | 女性 | 對照群 | | | | | | Norepinephrine | Control (n=7) | 2.01±0.67 | 1.84±0.70 |
| 4 | 男性 | 對照群 | | | | | | DHA (n=7) | 2.28±0.79 | 1.96±0.50 |
| 3 | 女性 | 對照群 | | | | | | Dopamine | Control (n=7) | 75.8±47.1 | 37.3±12.4 |
| 4 | 男性 | 對照群 | | | | | | DHA (n=7) | 56.9±49.0 | 33.0±0.00 |
| 3 | 女性 | 對照群 | | | | | | Cortisol | Control (n=7) | 384±80 | 287±113 |
| 4 | 男性 | 對照群 | | | | | | DHA (n=7) | 367±88 | 340±124 |

1 RCT = Randomized control trial, 2 FFQ = Food frequency questionnaire.
<table>
<thead>
<tr>
<th>発表年</th>
<th>著者名</th>
<th>研究デザイン</th>
<th>対象者数</th>
<th>年齢</th>
<th>平均観察期間(年)</th>
<th>食事調査方法</th>
<th>調査方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>Troisi RJ</td>
<td>觀察研究</td>
<td>健全な看護婦</td>
<td>77,866</td>
<td>34-64</td>
<td>FFQ</td>
<td>対象者に FFQ を行い、10年間フォローレスで760人が同意を確保した。同意者の発症率と栄養摂取量の関係を調べた。</td>
</tr>
<tr>
<td></td>
<td>Hodge L</td>
<td>症例対照研究</td>
<td>ゼン鳴</td>
<td>79</td>
<td>9.1-9.5</td>
<td>FFQ</td>
<td>対象群に FFQ を行い、魚の摂取量と疾患発症の関係を調べた。</td>
</tr>
<tr>
<td></td>
<td>Solvoll K</td>
<td>症例対照研究</td>
<td>アトピー性皮膚炎患者</td>
<td>138 (F 92, M46)</td>
<td>17-45</td>
<td>FFQ</td>
<td>対象群に魚の摂取量を計測を行った、栄養摂取量を比較した。</td>
</tr>
<tr>
<td>2001</td>
<td>Wakai K</td>
<td>観察研究</td>
<td>(cross-sectional)</td>
<td>F1012</td>
<td>22-57</td>
<td>FFQ</td>
<td>脂肪酸摂取量と脳の知覚性鼻炎の関係を調べた。</td>
</tr>
</tbody>
</table>

1 FFQ=Food frequency questionnaire.

示されているが、皮膚症や咽頭の症状に対する改善効果に否認的データが多く、発症の予防においての有効性についても明確ではない。

I. 妊娠中の摂取量・胎児への影響（表14）

アラキドン酸やDHAは神経組織の重要な構成脂質である。DHAは特に神経シナプスや網膜の光受容体に多く存在する。妊娠中の胎児のこれらの器官形成のため、より多くのn-3系脂肪酸の摂取が必要とされる。いままでの研究では、脂質血症リシン脂質のDHA濃度が高いと妊娠期間長いという関係が観察されているが、魚の摂取量を調査すると胎児体重は若干増加する報告が著者により、最近の大規模観察研究でもこれらの研究結果を支持する結果が得られている。8,729人の妊娠婦を対象に、妊娠10-30週に食事摂取調査を行い、魚の摂取量を推定し、早産率、生まれ体重との関連を調べた。魚摂取量が12g/day（EPA+DHA等の摂取量で0.15g/day）よりも少ない群では、魚摂取量が44g/day（EPA+DHA等の摂取量で0.537g/day）以上の群と比べて早産率、低出生体重の割合が増加していた。また、全く魚を食べない群では、最大摂取量と比べてと3.6倍と早産の増加が認められた。また、立位視力が不十分な魚を摂取した母親から生まれた児の方が不良だった。現在、日本人女性20-39歳の魚介類摂取量の中央値は72g/dayで、これらの報告から求められる魚の摂取量を十分満足するものである。

J. 乳児への影響

n-3系脂肪酸を多く含む人工乳、母乳を与えられた乳児の方が、n-3系脂肪酸の少ない人工乳を与えられた乳児に比べて、視力、脳の発達が良好ことを示す報告が多い（表15）。このため、魚を多く摂取している日本人の乳乳のn-3系脂肪酸含有量から計算した乳児のn-3系脂肪酸平均摂取量を目安とした。

以上より、n-3系脂肪酸の効果をまとめると、視覚性心疾患に対しては、予防効果を示す。視覚、加齢黄斑変性症（特にEPA, DHA）に対して、予防効果を示す可能性がある。肥満、糖尿病、がん、アルギニン性疾患に対して、予防効果を示してはいない。欧米では心臓病は重要死因であるため、死亡率も改善する。妊娠に対しても早産を予防する。日本人成人の平均13年国名栄養調査のデータベースから計算されたn-3系脂肪酸摂取の中央値は2.0-2.9g/dayであり、この量は十分これらの人々を予防できる量である。さらに中央値は、多くの日本人が普通に食事をすれば容易に得られる摂取量を意味する。また、日本人乳乳の平均n-3系脂肪酸摂取量は、論文で報告されている乳児の発育に必要な量を十分満足する量である。

すなわち、日本人のn-3系脂肪酸摂取量の中央値程度
<table>
<thead>
<tr>
<th>副題</th>
<th>OR</th>
<th>RR (95%CI)</th>
<th>文献番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>咲息の発症頻度とニール酸およびn-3系脂肪酸の摂取量に相関はなかった。</td>
<td>0.55</td>
<td>0.89 (0.68-1.15)</td>
<td>36</td>
</tr>
<tr>
<td>0.09</td>
<td>0.80 (0.69-1.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.13</td>
<td>1.03 (0.74-1.42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.21</td>
<td>0.88 (0.65-1.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.36</td>
<td>p for trend=0.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>油の多い魚の摂取量が多いと咲息の発症が低下した（p<0.01）。</td>
<td>0.77 (0.41-1.46)</td>
<td>1.15 (0.51-1.60)</td>
<td>0.5 (0.27-0.92)</td>
</tr>
<tr>
<td>0.91 (0.47-1.76)</td>
<td>1.16 (0.50-2.72)</td>
<td>0.62 (0.33-1.17)</td>
<td></td>
</tr>
<tr>
<td>0.53 (0.24-1.17)</td>
<td>1.13 (0.45-2.83)</td>
<td>0.29 (0.13-0.67)</td>
<td></td>
</tr>
<tr>
<td>疾患スコアと栄養要素摂取量の間の有意な関連なし。女性群において、n-3/n-6摂取比はアトピー性皮膚炎患者（0.16）はコントロール（1.7）と比較して有意に低下していた。男性群では関連なし。</td>
<td>0.81 (0.41-1.60)</td>
<td>1.17 (0.47-2.65)</td>
<td>0.52 (0.24-1.15)</td>
</tr>
<tr>
<td>0.92 (0.46-1.86)</td>
<td>1.20 (0.49-2.93)</td>
<td>0.68 (0.30-1.54)</td>
<td></td>
</tr>
<tr>
<td>0.59 (0.25-1.36)</td>
<td>0.96 (0.35-2.61)</td>
<td>0.26 (0.09-0.72)</td>
<td></td>
</tr>
</tbody>
</table>

表13 n-3系脂肪酸摂取量とアレルギー疾患（介入研究）

<table>
<thead>
<tr>
<th>発表年</th>
<th>著者国</th>
<th>対象者</th>
<th>対象者の数</th>
<th>年齢</th>
<th>観察期間（月）</th>
<th>結果</th>
</tr>
</thead>
</table>
| 1987 | Bjorneboe A ノルウェー RCT | アトピー性皮膚炎患者 | 16 | 16-56 | 3 | 介入群の、軽い、かさつきたの患者による疾患スコア下が有意に低くなった。また、皮膚に変化が見られなかった。
| 1988 | Arm JP イギリス RCT | 喚息患者（25人中、22人はアトピー性） | 15 | 27 | 2.5 | 介入群の、軽い、かさつきたの患者による疾患スコア下が有意に低くなった。また、皮膚に変化が見られなかった。
| 1988 | Kirsch CM | 喚息患者 | 25 | 47 | 2 | 介入群の、軽い、かさつきたの患者による疾患スコア下が有意に低くなった。また、皮膚に変化が見られなかった。
| 1989 | Hoyland E ノルウェー RCT | アトピー性皮膚炎患者 | 31 | 3 | 3 | 喚息の発症頻度とニール酸およびn-3系脂肪酸の摂取量に相関はなかった。
| 1989 | Bjorneboe A ノルウェー RCT | 喚息患者 | 12 (M4, F8) | 27.5 | 10.8 | 介入群の、軽い、かさつきたの疾患スコア下が有意に低くなった。
| 1989 | Arm JP イギリス RCT | 喚息患者 | 9 (M5, F4) | 26 | 2.5 | PEP、疾患スコア、皮膚の変化、血清IgE値において、群間で有意な差は認められなかった。
| 発売年 | 著者団 | 対象者 | 試験の種類 | 対象者の数 | 年齢 | 対象期間（月） | 結果 | 支援
|
|--------|---------|--------|-------------|-------------|------|----------------|------|-----|
| 1989 | Sterius- Aarnitsla Bフィンランド | 噌息患者 | 介入群：n=3系脂防酸群は魚油，n=6系脂防酸群は月見草油を 20 mL/day（重合して：魚油：2.9 g/day EPA：1.9 g/day DHA，月見草油：1.4 g/day EPA + 1.5 g/day DHA，魚油添加：11.5 g/dayリノール酸）29（M10, F19） |
| | | 噌息患者 | コントロール群：オーリオイル | 5 | 20-21 | 1.8±1.8（クロスオーバー） | PEF, 咽喉頭の飛沫量とよばれる | 10 |
| 1991 | Kelley DSアメリカ | 喉頭軟骨 | 介入群：n=3系脂防酸群（9.98 g/day EPA+DHA）を摂取。 |
| | | 喉頭軟骨 | コントロール群：n=1系脂防酸群 | 12 | 記載なし | 12 | 3ヶ月ごとにFEV1を測定し， smear し，実験開始後9ヶ月間，介
| | | 喉頭軟骨 | コントロール群：n=1系脂防酸群 | 12 | 記載なし | 12 | 3ヶ月ごとにFEV1を測定し， smear し，実験開始後9ヶ月間，介
| 1993 | Thien FCイタリア | 季節性の花粉によるアレルギー性体
| | | 介入群：n=3系脂防酸群（3.2 g/day EPA + 2.2 g/day DHA）を摂取，n=6系脂防酸群を摂取。 |
| | | 介入群：n=3系脂防酸群（3.2 g/day EPA + 2.2 g/day DHA）を摂取，n=6系脂防酸群を摂取。 |
| | | 介入群：n=3系脂防酸群（3.2 g/day EPA + 2.2 g/day DHA）を摂取，n=6系脂防酸群を摂取。 |
| 1993 | Berth-Jones Fイタリア | 介入群：n=3系脂防酸群（3.2 g/day EPA + 2.2 g/day DHA）を摂取，n=6系脂防酸群を摂取。 |
| | | 介入群：n=3系脂防酸群（3.2 g/day EPA + 2.2 g/day DHA）を摂取，n=6系脂防酸群を摂取。 |
| 1994 | Sopland ERソールウェイ | 介入群：n=3系脂防酸群（3.2 g/day EPA + DHA + EFA）を摂取，n=6系脂防酸群を摂取。 |
| | | 介入群：n=3系脂防酸群（3.2 g/day EPA + DHA + EFA）を摂取，n=6系脂防酸群を摂取。 |
| 1997 | Broughton KSアメリカ | 介入群：n=3系脂防酸群（3.2 g/day EPA + DHA + EFA）を摂取，n=6系脂防酸群を摂取。 |
| | | 介入群：n=3系脂防酸群（3.2 g/day EPA + DHA + EFA）を摂取，n=6系脂防酸群を摂取。 |
| 1998 | Hodge Lオーストラリア | 介入群：n=3系脂防酸群（3.2 g/day EPA + DHA + EFA）を摂取，n=6系脂防酸群を摂取。 |
| | | 介入群：n=3系脂防酸群（3.2 g/day EPA + DHA + EFA）を摂取，n=6系脂防酸群を摂取。 |
| 2000 | Nagakura T日本 | 介入群：n=3系脂防酸群（3.2 g/day EPA + DHA + EFA）を摂取，n=6系脂防酸群を摂取。 |

1 RCT=Randomized control trial, 2 LTB=Leukotriene B, 3 FEV1=Forsed expiratory volume in 1 s, 4 Peak expiratory flow, 5 PD20, 6 DHA=The provocative dose to cause a 20% reduction in FEV1.
表 14 n-3 系脂肪酸の妊娠期への影響

<table>
<thead>
<tr>
<th>発表年</th>
<th>著者国</th>
<th>対象・方法</th>
<th>結果</th>
<th>文献番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>Crawford MA 英国</td>
<td>95名の妊娠女性の妊娠期間における食事調査を行い、栄養とその差異を検証し、出生体重、胎児体重、順産率に影響を与えた。</td>
<td>出生時体重は、必須脂肪酸摂取量と正の相関を示した。</td>
<td>136</td>
</tr>
<tr>
<td>1991</td>
<td>Pospelov D オランダ</td>
<td>西北欧にある7つのコミュニティからのインヌイット女性の妊娠性高血圧症の関係を調査した。</td>
<td>妊娠最終6時間の拡張血圧値、魚と卵黄摂取の高いコミュニティから来帰グループで、低いグループと比較して低かった。妊娠期間中の高血圧になりやすさは、魚と卵黄摂取の低いグループで、高いグループの2.8倍であった。</td>
<td>137</td>
</tr>
<tr>
<td>1991</td>
<td>D'Almeida AD 南アフリカ</td>
<td>妊娠女性に、魚油の混合油（95%魚油/5%卵黄油、57%月白魚油、18 mg EPA、10 mg DHAを含む）、酸化マグネシウム（2タブレット/day、1タブレットに500 mgあるいはプラセボ（オーピール油）を与えた。</td>
<td>プラセボと比較して、月白魚油と卵黄の混合油を与えられたグループでは、妊娠の発症が低減した。酸化マグネシウム投与は、妊娠性高血圧症を発症した患者が少なかった。投薬を開始したものはプラセボ群のみで。</td>
<td>138</td>
</tr>
<tr>
<td>1993</td>
<td>Laivuori H フィンランド</td>
<td>18人の子宮頸症の女性を妊娠31-36週の間、月白魚油（7名）、魚油（5名）、プラセボ（6名）カプセル10個を投与した。月白魚油カプセルは375 mg EPA、545 mg DHA、魚油カプセルは、300 mg EPA、120 mg DHA、プラセボカプセルは、卵黄油500 mg、オーピール油500 mgを含んでいた。</td>
<td>脂肪酸の投与は、尿中のプロスタノイド増加や子宮頸症の臨床症状に影響を示さなかった。</td>
<td>139</td>
</tr>
<tr>
<td>1993</td>
<td>Schift E イスラエル</td>
<td>16人の第3期正常妊娠の女性が海水魚の魚肉（1.8 g n-3系脂肪酸を含む）を3週間授与した。このうち5人が無症状（心拍数の軽度の低下）を示した。7人の妊娠群と对照群で比較した。</td>
<td>24時間尿中への11-デヒドロトロンボキサンB2が32-71%の範囲で減少した。投薬中、排尿量に変化はなかった。</td>
<td>140</td>
</tr>
<tr>
<td>1993</td>
<td>Sorensen JD デンマーク</td>
<td>47人の30週の妊娠期の女性は、魚油（2.7 g/day n-3系脂肪酸）、オーピール油あるいは魚油投与なしの3群に分け、血清、尿のトロンボシンA2、A3、プロスタライシンI2、I3を測定した。</td>
<td>37%において、魚油授与群で、対照群と比較して、EPAとプロスタライシンA2の間の差はなかった。</td>
<td>141</td>
</tr>
<tr>
<td>1994</td>
<td>Bulstra-Ramakers MT オランダ</td>
<td>前回の妊娠で子宮内膜成長延長があり、妊娠性高血圧症を伴っていたあるいは伴っていたかった63人の妊娠女性、EPA（約3 g/day、32人）あるいはプラセボ（コハク酸、31人）を12-14週の妊娠期間に投与した。</td>
<td>1/3の女性が妊娠性高血圧症を発症し、1/3の子が出生時体重が10thパーセンタイルより小さかった。</td>
<td>142</td>
</tr>
<tr>
<td>1995</td>
<td>Postle AD 英国</td>
<td>妊娠16週から出産までの妊娠女性の血清ネフシジナルの分子種組成を調べた。食事調査も行った。</td>
<td>1/3の女性が妊娠性高血圧症を発症し、1/3の子が出生時体重が10thパーセンタイルより小さかった。</td>
<td>143</td>
</tr>
<tr>
<td>1995</td>
<td>Onwude JL 英国</td>
<td>ハイリスク妊娠症に、1日に1.62 g EPAおよび1.08 g DHAを含む油あるいはプラセボを投与した。</td>
<td>1/3の女性が妊娠性高血圧症を発症し、1/3の子が出生時体重が10thパーセンタイルより小さかった。</td>
<td>144</td>
</tr>
<tr>
<td>1995</td>
<td>AI MD オランダ</td>
<td>妊娠性高血圧における血清の必須脂肪酸組成、妊娠期間の食事と順に、妊娠性高血圧症との関係を調べた。</td>
<td>スタディグループは、出生時体重および妊娠期間で適正した体重が若干高い様を示した。37週より前の出産率は、スタディグループで発症、新生児の頭部成長率は、スタディグループで良かった。</td>
<td>145</td>
</tr>
<tr>
<td>1996</td>
<td>Odent MR 英国</td>
<td>49人の妊娠女性を対象に20分間の栄養アドバイスセッションをした。脂肪酸に富んだ魚の摂取を増加させ、トロンボイングリシンの摂取を減少させるようにアドバイスした。</td>
<td>スタディグループは、出生時体重および妊娠期間で適正した体重が若干高い様を示した。37週より前の出産率は、スタディグループで発症。新生児の頭部成長率は、スタディグループで良かった。</td>
<td>146</td>
</tr>
<tr>
<td>1996</td>
<td>Salvig JD デンマーク</td>
<td>妊娠30週（50人）を、魚油（2.7 g/day n-3系脂肪酸）、オーピール油あるいは魚油投与なしの1群に分けた。33、37、39週および出産まで血圧を測定した。</td>
<td>妊娠3期における血圧、魚油投与の影響は認められなかった。拡張圧値が90 mmHgを超える割合が、魚油で低くなる傾向はあったものの、収縮圧値（90 mmHg）および拡張圧値（90 mmHg）を超えた割合は、コンントロールとの間に有意差はなかった。</td>
<td>147</td>
</tr>
<tr>
<td>1996</td>
<td>Kevos Model U デンマーク</td>
<td>症例対照研究：9,434人の妊娠女性のコホートが行なわれた。45人子宮頸症、179人妊娠性高血圧症、182人子宮内膜成長延長、153人栄養、189人順産、286人出産で、臨床で検出された。</td>
<td>n-3系脂肪酸の最も低い摂取グループと比較した最も高い摂取グループのオッズ比は、妊娠性高血圧症では0.79%、子宮内膜成長延長では1.00、早産では0.99%であった。</td>
<td>148</td>
</tr>
<tr>
<td>1996</td>
<td>Helland IB ノルウェー</td>
<td>180人の女性が妊娠期間中に10 gのブラシ肝油あるいはコハク酸をえた。ラジオイオシングルマフィン、ダブルプレインラシング式で行われた。</td>
<td>タラ肝油とコハク酸油グループで、レプチン濃度は差が認められなかった。</td>
<td>149</td>
</tr>
<tr>
<td>2000</td>
<td>Olsen SF デンマーク</td>
<td>妊娠のハイリスクをもつ26人で魚油あるいはオーピール油を20週間以上で出産まで授与した。</td>
<td>1,133人から回答が得られ、子宮頸症を65人発症した。高エネルギーで7.5%より高いグループで5.4%以下のグループに対して、補正オッズ比は、2.5であった。</td>
<td>149</td>
</tr>
<tr>
<td>発表年</td>
<td>著者国</td>
<td>対象・方法</td>
<td>結 果</td>
<td>文献番号</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>2000</td>
<td>Steene LC ノルウェー</td>
<td>85人の糖尿病患者と1,071人の対照のアンケートデータから、妊娠期間中の食事と子の糖尿病発症との関係を調査した。</td>
<td>妊娠期間中にタラ肝油を摂取していた場合、子の糖尿病発症率は低下した。オッズ比は、0.3であった。</td>
<td>150</td>
</tr>
<tr>
<td>2001</td>
<td>Williams C 米国</td>
<td>妊娠中の母親の食事（オーリーフィッシュの摂取を含む）、子供の食事、社会経済的な状態を調べた。3.5歳での生活体験を調べた。</td>
<td>4ヶ月間母乳で育てられた子供は、母乳を与えたかなかった母乳より、よりハイグレードな生活体験に到達した。</td>
<td>57</td>
</tr>
<tr>
<td>2001</td>
<td>Grandjean P デンマーク</td>
<td>182人の妊婦女性の自己児児出産の血液脂肪酸濃度と海産物出産の栄養素の濃度および栄養素期間、出生児児体を調査した。</td>
<td>血清 EPA 濃度は、海産物の摂取量の増加に伴って増加した。</td>
<td>54</td>
</tr>
<tr>
<td>2001</td>
<td>Haugen G ノルウェー</td>
<td>妊娠16-20週にタラ肝油（9名）あるいはコーン油（10名）を10mL/day 与えた。</td>
<td>食事タラ肝油はプロスタグランジンF2αへの影響に何の影響も与えないかった。</td>
<td>151</td>
</tr>
<tr>
<td>2001</td>
<td>Clausen T ノルウェー</td>
<td>前向きコート研究：妊娠期2週目から3週目の食事調査を行った。エネルギー、ナトリウム、多量不飽和脂肪酸の摂取と妊娠期の関連を調べた。</td>
<td>7.1％が魚を全摂取しないグループ、1.9％が1回以上魚を摂取するグループであった。魚を全摂取しないグループの1週以上摂取する発育に対する栄養の平均オッズ比は、3.6であった。</td>
<td>152</td>
</tr>
<tr>
<td>2001</td>
<td>Helland IB ノルウェー</td>
<td>7-19週の妊娠婦590人に、タラ肝油あるいは、コーン油を10mL与えた。345人が出産まで続けた。</td>
<td>妊娠期間や、出生児児体重には差は認められなかった。</td>
<td>53</td>
</tr>
<tr>
<td>2002</td>
<td>Olen SF デンマーク</td>
<td>前向きコート研究：妊娠婦8,729人が参加した。食事と出産と低体温を調査した。</td>
<td>7.1％が魚を全摂取しないグループ、1.9％が1回以上魚を摂取するグループであった。魚を全摂取しないグループの1週以上摂取する発育に対する栄養の平均オッズ比は、3.6であった。飲用量依存的反応は摂取量は、0から1日15gの魚あるいは0.15g n-3系脂肪酸であった。</td>
<td>56</td>
</tr>
</tbody>
</table>

| 表 14 つづき | |

<table>
<thead>
<tr>
<th>発表年</th>
<th>著者国</th>
<th>対象・方法</th>
<th>結 果</th>
<th>文献番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>Uauy RD 米国</td>
<td>32人の新生児（1,000g-3,500g体重）をランダムに分け、人工乳A（18：2n-6, 24.0%；18：2n-3, 0.1%), 人工乳B（18：2n-6, 20.4%；18：2n-3, 2.7%), 人工乳C（18：2n-6, 20.4%；18：2n-3, 1.4%；n-6C=18, 0.1%, n-3C=18, 1.0%)を10-45日目の期間に与えた。52人は母乳を与えられた。</td>
<td>C群は、母乳群と同様であったが、血漿および赤血球膜において、A群ではDHAおよびn-3長鎖PUFAが低かった。ErdERGCs長鎖はA群で、母乳群またはC群との比較して高く、これは赤血球膜長鎖PUFAと負の相関を示していた。</td>
<td>153</td>
</tr>
<tr>
<td>1992</td>
<td>Birch EE 米国</td>
<td>超低体重児（27-33週妊娠期間）をランダムに分け、コーン油（18：2n-6, 24.2-21.1%；18：3n-3, 0.5-0.5%), 大豆油（18：2n-6, 20.8-20.3%；18：3n-3, 2.7-2.8%；EPA&DHA, 0-0.1%), 大豆油/魚油（18：2n-6, 20.4-18.1%；18：3n-3, 1.4-1.4%；EPA&DHA, 1.0-0.9%)を与えた。</td>
<td>大豆油/魚油群は、コーン油群と比較して、36週および57週における赤血球膜のn-3脂肪酸レベルが高く、VEP（visual-evoked potential）およびFPL（forced-choice preferential-looking）が高かった。大豆油群は、赤血球膜n-3レベルは低いが、大豆油/魚油よりも有意に低いVEPおよびFPLを示した。</td>
<td>154</td>
</tr>
<tr>
<td>1992</td>
<td>Xiang M スウェーデン</td>
<td>19人の正期出産母親が妊娠7ヶ月から1ヶ月まで3ヶ月で調査された。</td>
<td>母乳中のAA/DHA比は、頭部周囲長および被盖上被の頭部重合（1ヶ月および3ヶ月）と正の相関を示した。</td>
<td>155</td>
</tr>
<tr>
<td>1992</td>
<td>Carlson SE 米国</td>
<td>超低体重児（748-1,290g, 65名）をランダムにコンントール（イクサ PUFA を含まない）をあらかじめ魚油添加人工乳（EPA, 0.3%；DHA, 0.2%)を含む、92週目までに正期を与えた。</td>
<td>標準化した体重、身長対体重比、頭部周囲長は、48週が最も良好でその後、低値を示していたが、この標準化した体重の減少は、魚油添加人工乳より顕著であった。</td>
<td>156</td>
</tr>
<tr>
<td>発表年</td>
<td>著者国</td>
<td>対象・方法</td>
<td>結果</td>
<td>文献番号</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>1992</td>
<td>Birch DG</td>
<td>米国</td>
<td>81人の子供(平均年齢 30.4週出産)を10日以内に、母乳を摂取し、それ以下のラムダに人工乳A(コーヌ油ベース、18:2 n-6、24.2%、18:3 n-3、0.5%)、人工乳 B(大豆油ベース、18:2 n-6、20.8%、18:3 n-3、2.7%)、人工乳 C(大豆油+魚油、18:2 n-6、20.4%、18:3 n-3、1.4%、20:4 n-6、0.1%、EPA、0.65%、DHA、0.35%)を与えた。検査後36週と57週でフルフィルドエレクトロエログラム(ERG)を測定した。36週でのrod ERG(electroretinography)のfunction に有意の違いが見られず、人工乳 Aにおいて、母乳、人工乳 Cの36週出産児に比較して高いrod 関値を示した。人工乳 Bでは中間的な関値を示したが、36週出産児よりも有意に高かった。</td>
<td>157</td>
</tr>
<tr>
<td>1993</td>
<td>Makrides M</td>
<td>オーストラリア</td>
<td>16人の幼児(22.3週齢)の赤血球酸化脂防酸組成と、VEP(visual evoked potentials)を測定した。8人が母乳で、8人が70%以上の割合で人工乳を飲んでいた。人工乳はリノール酸(LA)、12-15%、α-リノレン酸(ALA)、1-16%を含んでいた。</td>
<td>158</td>
</tr>
<tr>
<td>1993</td>
<td>Birch E</td>
<td>米国</td>
<td>健康な早産児(平均年齢 27-33週、1,000-1,500g、30人)および正常出産児(妊娠39-41週、30人)で、人工乳とコーヌ油ベース人工乳(n-3 EPA)を摂取(妊娠57週まで)したときの視覚がテストされた。別に43人の健康な正常出産児は12ヶ月まで、重複でテストした。母親乳は、高オレイン酸含量および脂肪酸を与えられ、人工乳群は、高リノール酸サブリンを与えた。</td>
<td>159</td>
</tr>
<tr>
<td>1993</td>
<td>Uauy R</td>
<td>米国</td>
<td>超過体重(体重1,000-1,500g)の30人と母乳、それ以外はラムダに市販人工乳(18:2 n-6、24.2%、18:3 n-3、0.5%)、大豚油ベース人工乳(18:2 n-6、20.8%、18:3 n-3、2.7%)、大豆油および魚油ベース人工乳(18:2 n-6、20.8%、18:3 n-3、2.7%、20:4 n-6、0.1%、EPA、0.65%、DHA、0.35%)を与え、30-57週で、成長、赤血球酸化、赤血球酸化性を測定した。40週で70人、52週で22人の乳児が試験を完了した。</td>
<td>160</td>
</tr>
<tr>
<td>1993</td>
<td>Gibson RA</td>
<td>オーストラリア</td>
<td>ダブルブラインド、プラセボコントロールスタディ：母乳で少なくとも12週目の42人の健康な正規出産児を対象とした。母乳のDHA濃度は0.1-0.7%であった。これは、出産後12週間の母親の食事供給によってなされた。</td>
<td>161</td>
</tr>
<tr>
<td>1993</td>
<td>Jensen CL</td>
<td>米国</td>
<td>正期出産児にラムダに、マックされた方法で、約16%のLAと、0.4%、1.0%、1.7%、3.2%レベルのALAの人工乳を出生から4か月まで与えた。コントロールとして、母親から摂取された乳児の身体計測と、VEP(visual evoked responses)も測定された。</td>
<td>162</td>
</tr>
<tr>
<td>1998</td>
<td>Baur LA</td>
<td>オーストラリア</td>
<td>56人(男児35人、女児21人)の2歳未満の子供から、飼料が含まれた、骨格筋脂肪酸組成が分析された。完全な母乳摂取群(35人)と、年齢がマッチした人工乳群(12人、母乳乳が4週間未満)が比較された。さらに乳児を含む最小の乳児の分析も行った。</td>
<td>163</td>
</tr>
<tr>
<td>1998</td>
<td>Scott DT</td>
<td>米国</td>
<td>ランダム化臨床試験：245人の健康な正期児を対象とした。</td>
<td>Bayley Mental ScaleあるいはBayley Motor Scaleには、ランダム群間においても有意差はなかった。しかし、DHA群は、MacArthur scaleの二つにおいて、有意に高いスコアだった。DHA群はランダム群ではない母乳群と比較して、Vocabulary Comprehension Scaleにおいても高いスコアを示しランダム群の標準人工乳群と比較して、Vocabulary Production Scaleにおいても高いスコアを示した。人工乳群は母乳群の両方で、DHAレベルとVocabulary outcomesに有意な相関があった。</td>
</tr>
</tbody>
</table>
表15 つづき

1998 Birch EE 米国

発表年 著者国 対象・方法 結 果 文献番号

正期出産児を、母乳（29人）、人工乳（79人）をランダムに三分に分け、対照人工乳（18:2:6、14.6%:18:3:3、1.49%）で人工乳（18:2:6、15.1%:18:3:3、1.49%）、DHA（0.05%）、DHA+AA（0.05%）と人工乳（18:2:6、14.9%:18:3:3、1.53%）、AA（0.725%）、DHA（0.365%）を与えた。

DHAあるいはDHA+AAの添加により最初の4カ月の赤血球脂質濃度は明確に改善された。DHAあるいはDHA+AAの添加群は、6、17、52週のVSEP力が高められた。これは、母乳群と同様であった。しかし、対照人工乳では母乳群に劣っていた。出産10日目の子の赤血球アラキドン酸含量は、すべてのグループで出産時を基準に比較した。人工乳グループでは出産10日目および42日の体重、頭囲と赤血球DHAおよびコレステロールエステルDHA含量と関係していた。

165

1998 Woltit HA オランダ

低出生体重児（2500g以下、妊娠30-41週、143名）の、未熟乳児用人工乳で長鎖PUFAを含まないもの（81名）、長鎖PUFAを含むもの（29名）、母乳（33名）を与え、成長速度や赤血球アラキドン酸およびDHA状態を調べた。

長鎖PUFAを含むあるいは含まない人工乳で、運動、発達、成長、栄養、アレルギー性に違いはなかった。

166

1998 Lucas A 英国

ダブルブインド、ランダムマゼ、コントロール方式で、477名の健康な新生児出産児を対象とした。309人が人工乳で、ランダムマゼで、長鎖PUFAなし人工乳（18:2:6、12.4%:18:3:3、1.1%、115名）、長鎖PUFA（18:2:6、15.9%:18:3:3、1.4%）、AA（0.3%）、EPA（0.31%）、DHA（0.32%）が与えられ、183名が母乳を与えられた。少なくとも1週間追加された。

167

1999 Xiang M スウェーデン（中国）

北西部中国の41人の初産乳中の母乳（グループ1：出産後1ヶ月18名、グループ2：出産後3ヶ月23名）の脂肪、母乳脂肪酸組成および子供の身体的特性を調べた。

脂質からのエネルギー摂取は、グループ1で49.7%，グループ2で47.3%であり、主要な脂肪酸はDHAであった。母乳中のAAとDHAの適度が高いが2ヶ月の体重増加を正に相関し、DHA濃度が1ヶ月3ヶ月での身長増加と正の相関を示した。

168

1999 Makrides M オーストラリア

ランダム、ダブルブラインド方式で、人工乳の3つのグループ、ブロック（18:2:6、16.6%、18:3:3、1.4%、長鎖PUFAなし、28人）、ブロック（18:2:6、16.6%、18:3:3、1.4%、長鎖PUFA、28人）、ブロック（18:2:6、16.6%、18:3:3、1.4%）と分け、DHA+AAが与えられたグループで、AA（0.34%）、EPA（0.31%）が含まれた。

体重、身長、頭囲、前頭厚径に、出生後1週間、評価時前の出生時に対する補正をしたとしても、人工乳で差がなかった。

169

1999 Bakker EC オランダ

7ヶ月の母乳あるいは育児用人工乳（LA、11.2-13.5%，ALA、13.5-22%，長鎖PUFAなし）を与えられた101名の出産児の赤血球および血液リノ酸脂質の必須脂肪酸状態を調べた。

赤血球および血清リノ酸脂質のDHA濃度は、人工乳を与えられた児童で母乳を与えられた児童より低かった。しかし、双卵児の同卵性別差は認められなかった。

170

2000 Dachen K スウェーデン

120人の子供の誕生時と3ヶ月時の血清サブリン、母乳の脂肪酸組成、Skin prick試験をした。

赤血球および血清リノ酸脂質のDHA濃度は、人工乳を与えられた児童で母乳を与えられた児童より低かった。しかし、双卵児の同卵性別差は認められなかった。

171

2000 Hoffman DR チリ

健康な正期出産児をランダムに分け、市販人工乳（18:2:6、14.6%、18:3:3、1.49%）、DHA添加人工乳（18:2:6、15.1%、18:3:3、1.54%、DHA、0.15%）、DHA+AA添加人工乳（18:2:6、14.9%、18:3:3、1.53%、DHA、0.36%、AA、0.72%）を3週間与え、母乳を与えられたラファレンク（29人）を設けた。

DHA+AA添加群はBSID-IIのmentalDevelopmentIndex（MDI）の増加を示した。運動と行動のスコアがDHAあるいはDHA+AA群で高かった。DHA+AA群は、優位な発展のアセチヨンペプシノーゼを示した。4ヶ月後の赤血球DHA+MDIは正の相関を示した。

172

2000 Marin MC アルゼンチン

栄養不良の正期出産児（45-90日目）を母乳群（6人）、人工乳群（18:2:6、12.0%、18:3:3、0.9%）を与え、DPA（0.1%）、DHA（0.3%）、人工乳群（18:2:6、14.4%、18:3:3、0.4%）とした。

FFIを与えられた乳児の鶏卵機能は、母乳群と同様であった。乳児群は正常な結果を示した。これらの結果は、赤血球リノ酸脂質のDHAレベルと関係していた。

173

2000 Birch EE 米国

正期新生児、ランダムに、ダブルブインド法で、ブロック内（長鎖PUFAなし、21人）、DHA添加（DHA、0.05%、23人）、DHA+AA添加（DHA、0.34%、AA、0.34%、24人）人工乳に分けられ、最初の1ヶ月の子供が、BayleyScaleofInfantDevelopment、2nd edition（BSID-II）により評価された。

ランダムされた人工乳群間には、16週、24週におけるVSEP（visual evoked potential）に差はなかった。乳児群では、人工乳群と比較して、VEPは16週でより良好だったが16週で低下した。Bayleyのメナルディケイプブロック指数（MDI）およびコールミーアカウントブロック指数は、1週と2週人工乳で同様であった。乳児群は、2週後で環境要因で補正したあとでもMDIが人工乳群よりも高かった。

175
表15 つづき

<table>
<thead>
<tr>
<th>年代</th>
<th>姓氏</th>
<th>国籍</th>
<th>対象</th>
<th>方法</th>
<th>結果</th>
<th>文献番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>Jorgensen MH</td>
<td>デンマーク</td>
<td>39人の4ヶ月齢の母乳断乳乳児が横様研究された。</td>
<td>Swept visual evoked potentials、乳中DHA、母親の魚の摂取が調べられた。</td>
<td>母乳の摂取と乳中のDHAレベルは正の相関があった。</td>
<td>177</td>
</tr>
<tr>
<td>2001</td>
<td>Auestad N</td>
<td>メキシコ</td>
<td>ラングマスク、プランクマホ、パラレルトライアル方</td>
<td>正則新生児(239人)に、AA+DHA添加</td>
<td>人工乳群は、9日齢以降ランダムにAA+DHA添加</td>
<td>178</td>
</tr>
<tr>
<td>2001</td>
<td>O'Connor DL</td>
<td>メキシコ</td>
<td>ランダムマスク、ランダム化、パラレルトライアル方</td>
<td>正則新生児(239人)に、AA+DHA添加</td>
<td>人工乳群は、9日齢以降ランダムにAA+DHA添加</td>
<td>179</td>
</tr>
<tr>
<td>2001</td>
<td>Ramirez M</td>
<td>スペイン</td>
<td>17人の乳児(平均体重1.325kg)が低体重新生児</td>
<td>酵母乳(FL)、17人(平均体重1.309kg)が乳化した前</td>
<td>乳児の添加</td>
<td>180</td>
</tr>
<tr>
<td>2002</td>
<td>Voigt RG</td>
<td>メキシコ</td>
<td>80人の近親血統で母乳で育た子供が</td>
<td>4ヶ月齢の乳児</td>
<td>乳児のDHAを乳汁</td>
<td>181</td>
</tr>
<tr>
<td>2002</td>
<td>Birch EE</td>
<td>メキシコ</td>
<td>65人の健康な近親血統の母乳摂取児</td>
<td>デルブロック法で、4ヶ月齢の乳児</td>
<td>乳児のDHAを乳汁で</td>
<td>182</td>
</tr>
<tr>
<td>2002</td>
<td>Innis SM</td>
<td>カナダ</td>
<td>194人の未熟児にデルブロック法、マルチセン</td>
<td>コントロール群(34:9)</td>
<td>乳児のDHAを乳汁で</td>
<td>183</td>
</tr>
</tbody>
</table>

注: 人工乳により、乳児のDHA摂取が増加することを示唆する結果が得られた。
n-3系脂肪酸の好ましくない効果

A. 出血時間の延長

魚油、EPAやDHAを含むカプセルを投与し、出血時間を測定した13の報告の中で、出血時間の延長が認められた報告が九つ、認められなかった報告が四つあった（表16,17）。EPAやDHA、10g/day以上の投与ではすべての報告で、30-80%出血時間が延長している（表58-61）。しかし、10g/day以下の投与量では、関連は明らかでなく、2-3g/dayのEPAやDHA投与でも出血時間が30-50%延長するという報告もありますが、5-7g/dayのEPAやDHAを6ヶ月、または1年間投与しても、出血時間の延長は認められていないとする報告もある（58-61）。高脂血症患者で、鼻出血が認められたという報告は一つあるが、重篤な出血の報告はない。このように、EPAやDHAを多く摂取し、出血時間が延長しても、臨床上問題を生じた報告はないが、脳出血等の罹患率が増加する可能性は否定できていない。

B. LDL-コレステロールの増加

中性脂肪症や、高血圧症患者、糖尿病患者で、魚油やEPAやDHAを含むカプセルを投与により血中LDL-コレステロール値の10-30%の増加が認められて

表16 n-3系脂肪酸の摂取により出血時間が延長

<table>
<thead>
<tr>
<th>発表年</th>
<th>著者国</th>
<th>対象/方法</th>
<th>結果</th>
<th>文献番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>Thongren Mスウェーデン</td>
<td>健康な人10人に、2-3g/day EPAを含む魚を11週間投与。</td>
<td>血管に比べて、出血時間は30%増加。</td>
<td>63</td>
</tr>
<tr>
<td>1981</td>
<td>Goodnight SH米国</td>
<td>介入研究：健康男性6人、女性5人を対象とし、4週間通常食群と、EPA10g/day n-3系脂肪酸を摂取群。</td>
<td>サーモン食群で、出血時間が6.75分から10分増加。</td>
<td>61</td>
</tr>
<tr>
<td>1981</td>
<td>Sanders TA米国</td>
<td>12人の健康男性に1.8g/day EPA＋2.2g/day DHAを6週間投与として投与。</td>
<td>出血時間が4分から6分延長。</td>
<td>62</td>
</tr>
<tr>
<td>1983</td>
<td>Lorenz R西ドイツ</td>
<td>介入研究：5人健康男性、10g/day n-3系脂肪酸を、肝臓として25日間投与。</td>
<td>n-3系脂肪酸投与により出血時間が104秒から145秒へ延長。</td>
<td>60</td>
</tr>
<tr>
<td>1983</td>
<td>Mørtensen JZデンマーク</td>
<td>介入研究：20人の健康男性を対象に、10g/day fish oil (4g/day n-3系脂肪酸)を4週間投与。</td>
<td>コントロール群に魚油を用いて、タブルプランドクロスオーバーデザインを用いた。</td>
<td>64</td>
</tr>
<tr>
<td>1984</td>
<td>Saynor R英国</td>
<td>心疾患患者を含む107人を対象に、3.6g/day EPAを2週間投与。</td>
<td>出血時間は3.5分から7分へ延長。</td>
<td>65</td>
</tr>
<tr>
<td>1989</td>
<td>Eritland Jノルウェー</td>
<td>男性37-74歳、22名を対象に、3.4g/day EPA＋DHAをカプセルで4週間投与。</td>
<td>投与群と比べて、出血時間が240秒から370秒へ延長。</td>
<td>66</td>
</tr>
<tr>
<td>1990</td>
<td>Levinson PD米国</td>
<td>介入研究：69歳高血圧の男女12名を対象とし、6人50g/day魚油（9g EPA＋6g DHA/day）を6人50g/day植物油を6週間を与え。</td>
<td>魚油群、出血時間が317秒から421秒へ延長。</td>
<td>67</td>
</tr>
<tr>
<td>1995</td>
<td>Bennett WM米国</td>
<td>介入研究：腎臓移植の患者18人に、18g/day EPAをカプセルで26週間投与。</td>
<td>コントロールとして18g/dayのコーン油を50人に投与。</td>
<td>68</td>
</tr>
</tbody>
</table>

表17 n-3系脂肪酸を摂取しても出血時間は延長せず

<table>
<thead>
<tr>
<th>発表年</th>
<th>著者国</th>
<th>対象/方法</th>
<th>結果</th>
<th>文献番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>Donnelly SMカナダ</td>
<td>介入研究：腎臓移植の患者16人に、3.6g/day n-3系脂肪酸（MaxEPA）と、オレイン油（コントロール）を4週間投与し比較。</td>
<td>n-3系脂肪酸群は出血時間4.8分、コントロール群は4.5分と有意差なし。</td>
<td>69</td>
</tr>
<tr>
<td>1994</td>
<td>Leaf A米国</td>
<td>介入研究：PTCA（Primary Percutaneous Transluminal Coronary Angioplasty）を行った患者551人を対象に、4.1g/day EPA＋2.8g/day DHAをカプセルで6ヶ月間投与、コントロールはコーン油。</td>
<td>出血時間は6ヶ月間の投与で、6.34分から6.47分と変化なし。臨床的な出血も差なし。</td>
<td>70</td>
</tr>
<tr>
<td>1997</td>
<td>Roulet Mスイス</td>
<td>介入研究：中心静脈栄養患者で魚油10%（10人）、コントロールとして大豆油30%（9人）を、食事がん術後の患者にエマルジョンとして7日間投与比較。</td>
<td>出血時間に変化なく、臨床的な出血も認められなかった。</td>
<td>71</td>
</tr>
<tr>
<td>2001</td>
<td>Toner A米国</td>
<td>介入研究：SCD（Sickle cell disease）患者15人に、5-7g/day n-3系脂肪酸を魚油として1年間投与、また、コントロールとして5人にオレインオイルを投与し比較。</td>
<td>出血時間に差はなく、臨床的な出血も認められなかった。</td>
<td>72</td>
</tr>
</tbody>
</table>
表 18 n-3 系脂肪酸摂取により LDL-コレステロールが増加

<table>
<thead>
<tr>
<th>発表年</th>
<th>著者国</th>
<th>対象・方法</th>
<th>結果</th>
<th>文献番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>Schectman G 米国</td>
<td>13人（男性）の2型糖尿病患者に対象に4g/day, 7.5 g/day n-3系脂肪酸（魚油カプセル）およびコントロールとして12 g/dayのサラサラ油を1か月間投与。</td>
<td>サフラワー油（130mg/dL）に比べて、4 g/dayの魚油群でLDL-コレステロールが152 mg/dLに軽度増加。</td>
<td>189</td>
</tr>
<tr>
<td>1988</td>
<td>Vandogen R オーストラリア</td>
<td>1型糖尿病22人男性患者に、4 g/day n-3系脂肪酸を3週間投与。</td>
<td>n-3系脂肪酸投与により、LDL-HDLコレステロールの両方が増加。</td>
<td>190</td>
</tr>
<tr>
<td>1989</td>
<td>Derenko DM 米国</td>
<td>31名の高コレステロール患者に対し、1.7 g/day EPA + DHAを含む魚油と、コントロールとしてサラサラ油を28日間投与。</td>
<td>魚油摂取により、血中LDL-コレステロールが16%増加。</td>
<td>67</td>
</tr>
<tr>
<td>1990</td>
<td>Hughes GS 米国</td>
<td>高血圧13人、クロスオーバーデザインで、5 g/day n-3系脂肪酸カプセルを30日間投与。</td>
<td>コントロールに比べて、LDLコレステロールが9%増加。</td>
<td>191</td>
</tr>
<tr>
<td>1990</td>
<td>Reis G イタリア</td>
<td>8人男性2型糖尿病患者10g/day魚油とオレイン酸オイルを2週間ずつ投与。</td>
<td>LDLコレステロールがTGで12%, EPAで30%増加。</td>
<td>192</td>
</tr>
<tr>
<td>1991</td>
<td>Annuzzi G イタリア</td>
<td>16人2型糖尿病/高血圧/高脂血症患者15g/day魚油（6g/day n-3系脂肪酸）、コントロールに15g/dayオレイン酸を6か月間投与。</td>
<td>LDLコレステロールが魚油群で145mg/dLと、オレイン酸117mg/dLに比べて増加。</td>
<td>193</td>
</tr>
<tr>
<td>1994</td>
<td>Morit TA オーストラリア</td>
<td>40%の高脂血症者5名（1.32g/day EPAを含む）または、カプセル2.5gのn-3系脂肪酸を、軽度高血圧の男性17名に投与。</td>
<td>脂質エネルギー比40%比、魚、カプセル投与により、LDLコレステロールが増加。</td>
<td>195</td>
</tr>
<tr>
<td>1995</td>
<td>Morgan WA 米国</td>
<td>胆固醇/高血圧/高脂血症患者40人、1g/day, 18g/day魚油、9g/day、18g/dayのコーン油を投与、12週間フォロー。</td>
<td>9g/dayと18g/day群を合わせると、魚油群でLDLコレステロールが3.71mmol/Lから4.04mmol/Lへ6週目に増加。しかし、この増加は12週目では消失。</td>
<td>196</td>
</tr>
<tr>
<td>1997</td>
<td>Harris WS ソルトレイ</td>
<td>胆固醇血症の患者（トリグリセライド値0.5~2g/dL、21人）に対する3.4g/day EPA+DHAを16週間投与。コントロールとしてコーン油を使用。</td>
<td>LDLCコレステロールがEPA+DHA投与群で31%増加。コントロール群では変化なし。</td>
<td>197</td>
</tr>
</tbody>
</table>

いる（表18）。少ない投与量でもLDL-コレステロールの増加が認められ、たとえば、高コレステロール患者31人に1.7 g/day EPAとDHAを含むカプセルを投与したところ、1か月間に16%のLDL-コレステロールの増加が認められている38)。しかし、正常人では、LDL-コレステロール値の増加は少ない。また、前記のように、魚油やEPAやDHA投与により、虚血性心疾患患者が増加した報告はなく、減少を示す報告がほとんどである（表15）。

C. 血糖値の増加

糖尿病患者に対して、魚油やEPAやDHAを含むカプセルの投与により血糖値が増加する報告が認められたが、最近のメタアナリシスで否定されている29)。逆に糖尿病患者を対象とした最近の大規模観察研究では、魚の摂取の増加が死亡率を低下させることの報告されている40)。

D. 好中球の減少や機能障害

免疫能については、良い反応、たとえば、白血球のIL-6、TNF-αの増加、好中球数の減少、セレコッキンの増加反応、また、悪性反応、たとえば、好中球の遊走能の低下の報告があるが、総合的に判断して、n-3系多価不飽和脂肪酸が良いかどうかは不明である（表19）。

E. 過酸化脂質の増加

n-3系脂肪酸は酸化されやすいため、過酸化摂取により人体に有害の過酸化脂質の増加が想定される。しかしながら、ヒトでの研究は少ない（表20）。3報告にてEPAやDHAの3.0 g/day投与により、過酸化脂質（血中TBARS、尿中MDA）の生成が40~50%増加した29)。しかし、これらはそれぞれ、23人、7人の少数例の検討であり、260人を対象とした大規模研究ではn-3系脂肪酸摂取量と血中TBA値との間に有意な関係は認められていない29)。

F. PAI-1値の増加

魚油やEPAやDHAを含むカプセルの投与により、動脈硬化を促進する血中PAI-1（plasminogen activator inhibitor type1）値が増加する報告があったが、最近のメタアナリシスで否定されている29)。

G. n-3系脂肪酸その他の副作用（表21）

多量に魚油カプセル（50~60カプセル/day）を投与した人で、肝肥大と、ピタミンAの過剰摂取が認められている40)。また、8 g/dayのn-3系脂肪酸投与で、赤血中のNa-Kポンプの活性低下が認められ39)。3 g/dayのEPA投与で、アスピリンによる喘息患者における呼吸機能の低下が認められている40)。
表 19 n-3系脂肪酸摂取量と免疫能

<table>
<thead>
<tr>
<th>発表年</th>
<th>著者国</th>
<th>対象・方法</th>
<th>結果</th>
<th>文献番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>Schmidt EB デンマーク</td>
<td>健康男性12人に対し、(5.3 g/day n-3系脂肪酸)を6週間与えた。</td>
<td>投与後、好中球および単球の遊走能が低下した。</td>
<td>198</td>
</tr>
<tr>
<td>1998</td>
<td>Kelley DS 米国</td>
<td>健康男性11人に対し、6 g/day DHAを30日間投与、コントロールとしてリノール酸を4人に投与。</td>
<td>好中球数が、DHA投与群で21%増加。</td>
<td>199</td>
</tr>
<tr>
<td>1998</td>
<td>Selje Jørgen I ノルウェー</td>
<td>健康男性22人、4.8 g/day n-3系脂肪酸カプセルで6週間投与。</td>
<td>接種因子4.0においてE-セレクチン、VCAM-1が、投与前に比べて21%、8%それぞれ増加。</td>
<td>200</td>
</tr>
<tr>
<td>1999</td>
<td>Selje Jørgen I ノルウェー</td>
<td>健康男性23人に対し、5.1 g/day n-3系脂肪酸を6ヶ月投与、コントロールとしてDHAを投与比較。</td>
<td>LPS刺激後の白血球中由来のIL-6、TNFαがn-3系脂肪酸群で増加。</td>
<td>201</td>
</tr>
<tr>
<td>2000</td>
<td>Healy DA 英国</td>
<td>健康男性8人/グループに、魚油(0.58 g/day EPA+1.67 g/day DHA)を12週間投与、好中球の遊走能、O2−産生能を調べた。コントロールとして、バーミン油摂取群と比較。</td>
<td>差はなかった。</td>
<td>202</td>
</tr>
</tbody>
</table>

表 20 n-3系脂肪酸摂取量と酸化脂質

<table>
<thead>
<tr>
<th>発表年</th>
<th>著者国</th>
<th>対象・方法</th>
<th>結果</th>
<th>文献番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>Piche LA カナダ</td>
<td>健康成人77人を対象に、Cod liver oil (3 g/day EPA+DHAを含む)を投与。また、3 g/day EPA+DHAカプセルを投与し、尿中のMDA (Malondialdehyde)を定量した。</td>
<td>Cod liver oil投与により、MDAが37.5%増加したが、カプセルでは変化しなかった。</td>
<td>71</td>
</tr>
<tr>
<td>1995</td>
<td>Eritland I ノルウェー</td>
<td>冠動脈疾患患者230人、市販の魚油カプセル(3.4 g/day EPA+DHA)を投与、投与しない冠動脈疾患251人をコントロールとし、9ヶ月間フォローアップ。</td>
<td>血中TBA (Thiobarbituric acid-reactive substances)値は両群で差は認められなかった。</td>
<td>72</td>
</tr>
<tr>
<td>1996</td>
<td>McGrath LT 英国</td>
<td>NIDDMの患者23人、魚油カプセル(3.0 g/day EPA+DHA)およびコントロールとしてオリーブ油カプセルを6週間ずつクロスオーバーデザインで投与した。</td>
<td>魚油カプセル投与により、TBARS (Thiobarbituric acid reacting substances)が1.15から1.77 μmol/Lに54%増加した。</td>
<td>70</td>
</tr>
</tbody>
</table>

表 21 n-3系脂肪酸とその他の副作用

<table>
<thead>
<tr>
<th>発表年</th>
<th>著者国</th>
<th>対象・方法</th>
<th>結果</th>
<th>文献番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>Picado C スペイン</td>
<td>アスピリン不耐性発症の患者10人を対象に、3 g/day EPAをコントロール食を6週間投与し、肺機能を調べた。</td>
<td>PEF (Peak expiratory flow)がEPA群で10%低下。</td>
<td>76</td>
</tr>
<tr>
<td>1990</td>
<td>Grubb BP 米国</td>
<td>35歳の白人男性が魚油カプセル (Max EPA, Pro Mega etc)を30-50カプセル/day、1年間摂取。</td>
<td>肝肥大と血中ピタミンAレベルが、482 μg/dL (正常30-70 μg/dL)に増加。カプセル投与を中止すると、1カ月でこれらの異常は消失。</td>
<td>74</td>
</tr>
<tr>
<td>1995</td>
<td>Bartoli GM イタリア</td>
<td>健康成人10人に7.7 g/day n-3系脂肪酸を180日投与し、コントロール群10人と比較。</td>
<td>n-3系脂肪酸摂取群で、赤血球中のMg2+ATPase、NA+K+ATPaseの活性が40%，60%それぞれ低下した。</td>
<td>75</td>
</tr>
</tbody>
</table>

以上、n-3系脂肪酸の有益作用についてまとめると、血液検査で、出芽性の延長、LDLコレステロール値の増加が報告されているが、臨床的問題となる出血例は報告されていないし、消化管出血、脳出血、虚血性心疾患の罹患率が増加することを示す報告もない。このため、今回の策定では、目標量の上限設定は行わなかった。

魚に含まれる水銀の危険性

日本人の食事摂取基準（2005年版）は栄養素に関する摂取基準であり、魚に含まれる水銀、カドミウム、鉛、すなわちの重金属、PCB、ダイオキシンなどの有害物質の摂取については考慮されていない。これらの環境汚染物質は魚の種類、採取される場所により大きく異なり、実際には測定されないと污染の程度が不明であるため、摂取基準を設定しても、適用は難しい。

魚には水銀が含まれていることから、2003年6月に厚生労働省から、“水銀の多く含まれる魚（メジナやキンメダイ等）の摂取を、妊娠は制限するよう”勧告が出された。水銀は大きな魚や深海魚に多く含まれている。なぜ、メジナやキンメダイが含まれ、マグロは含まれなかったのであろうか。日本では、水俣病を発症し
た人の最低の1日メチル水銀摂取量は250 μg/day（体重50 kg当たり）であることから、その量の10分の1、すなわち、25 μg/dayを無作用レベル（安全量）としている。キエンマタイに含まれるメチル水銀量は0.58 μg/g、キエンマタイを食べている人の平均キエンマタイ摂取量（国民栄養調査から特別集計）は76.8 g/dayであり、キエンマタイを食べている人の平均メチル水銀摂取量は0.58×76.8=44.5 μg/dayとなり、25 μg/dayを超え、キエンマタイがノミシングされた。マグロの赤みにも水銀が多く含まれているが、日本のマグロの1日平均摂取量は21 gと少なく、マグロを食べている人の平均メチル水銀摂取量は25 μg/day以下となり、胃腸される魚の中には含まれなかった。しかし、日食的に、マグロを100 g前後の人は無作用レベルを超える。したがって、キエンマタイ、カジキののみならず、多量にマグロを摂取する方は水銀にも注意すべきである。

さらに、日本の基準は成人の基準値であり、妊娠を対象とした基準値ではない。胎児は水銀の感受性が高いため、妊娠に関して、より厳しい基準が求められている。実際、米国（USEPA）の妊娠（体重50 kg）の水銀基準摂取量（RfD）は5 μg/dayである（77）。しかしながら、以下に示すように、実際に妊娠を多量に摂取して、

<table>
<thead>
<tr>
<th>発表年</th>
<th>著者名</th>
<th>研究室の職員数</th>
<th>名の水銀摂取量と、神経学的異常の関連を調べた。</th>
<th>結果</th>
<th>文献番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>Birke G スウェーデン</td>
<td>26名の水銀摂取量と、神経学的異常の関連を調べた。</td>
<td>緊密的な異常は認められなかった。特に0.8 μg/dayの摂取量の摂取した人は、毛髪に185 μg/gの水銀を示したが、神経学的異常は認められなかった。</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>Skerfving S スウェーデン</td>
<td>182人の水銀摂取量と、神経学的異常の関連を調べた。</td>
<td>水銀摂取量を0.5 μg/g以下に保つことが重要であり、運動失調、記憶力低下といった症状は、既往歴なしでなかった。水銀摂取量が1,100 μg/gの高い濃度の人も異常はなかった。</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>Turner MD 米国</td>
<td>ベル人の漁村と村に住む(190人と93人)を対象に、魚の平均摂取量と血中のメチル水銀濃度の関係を調べた。</td>
<td>潜伏期の短縮期、しっかり初めと、水銀摂取量とは関係がなかった。</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>Myers GJ 米国</td>
<td>セイペン類の妊娠110人（1988年）を対象に、母乳の水銀摂取量を測定し、母乳から生まれた子供が、生後6ヶ月、29, 39、69等の発達の程度を調べた。</td>
<td>セイペン類の妊娠110人（1988年）を対象に、母乳の水銀摂取量を測定し、母乳から生まれた子供が、生後6ヶ月、29, 39、69等の発達の程度を調べた。</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>Grandjean P デンマーク</td>
<td>突然の発症のあるセイペン類の妊娠110人（1988年）を対象に、母乳の水銀摂取量を測定し、母乳から生まれた子供が、生後6ヶ月、29, 39、69等の発達の程度を調べた。</td>
<td>水銀摂取量が5人(2.5, 4.5, 7.7, 10.0, 15.0 μg/g)に分け検討したが差はなかった。</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>Murata K デンマーク</td>
<td>ミルクの販売業者による調査、水銀を排出する魚の摂取の実態、水銀量と、水銀摂取量と神経学的異常の関連を調べた。</td>
<td>水銀摂取量が10 μg/gを超えると、40 Hzにより生じるビークのしぼれ時間が0.182 ms延長していた。また、これらの異常は子供の水銀摂取量とは関係せず、妊娠時の影響を受けた可能性を示唆した。</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>Grandjean P デンマーク</td>
<td>アメガザルと魚の生産を追っている工場（水銀を排出する魚の摂取の実態、水銀量と、水銀摂取量と神経学的異常の関連を調べた。</td>
<td>水銀摂取量が10 μg/gを超えると、40 Hzにより生じるビークのしぼれ時間が0.182 ms延長していた。また、これらの異常は子供の水銀摂取量とは関係せず、妊娠時の影響を受けた可能性を示唆した。</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>Steuerwald U アンマーク</td>
<td>调査漁業の魚を食物摂取の習慣に関する調査。</td>
<td>NOS (Neurologic optimality score) という神経学的なテストを行い、点数をついたところ、水銀摂取量が多い魚を多く食べていた。</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>Myers GJ 米国</td>
<td>セイペン類の妊娠110人（1988年）を対象に、母乳の水銀摂取量と、母乳から生まれた子供が、生後6ヶ月、29, 39、69等の発達の程度を調べた。</td>
<td>CBCMLのTotal T スコアと、母親の毛髪の水銀摂取量と差はなかった。</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>Axtell CD 米国</td>
<td>セイペン類の妊娠110人（1988年）を対象に、母乳の水銀摂取量と、母乳から生まれた子供が、生後6ヶ月、29, 39、69等の発達の程度を調べた。</td>
<td>水銀摂取量が5人(2.5, 4.5, 7.7, 10.0, 15.0 μg/g)に分け検討したが、差は見出されなかった。</td>
<td>209</td>
<td></td>
</tr>
</tbody>
</table>
臨床的に重大な障害の認められた報告はない。

A. 日常の魚油の水銀摂取による人体への影響（表22）

日常の魚摂取によると思われる、水銀摂取の妊婦への影響を調べた研究が11あり、そのうち4報で、知能テスト、および脳波の非常に軽度な異常が認められている78-81）。しかし、異常の認められた研究はすべて同じグループからの研究で、他のグループの追試が必要である。

B. 魚摂取に伴う水銀摂取の増加による虚血性心疾患発症への影響

水銀摂取と虚血性心疾患発症の関連について、反対する四つの報告がある（表23）。フィンランドの観察研究82）および米国の症例対照研究83）では、毛髪、または爪の水銀量が多いほど、心筋梗塞および死亡率が高かった。しかし、米国の観察研究84）では差はなく、

<table>
<thead>
<tr>
<th>発表年</th>
<th>著者国</th>
<th>調査方法と結果</th>
<th>平均観察期間（年）</th>
<th>対象者数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>J.T. Salonen</td>
<td>観察研究：フィンランドに住む1,833人の男性を対象に毛髪の水銀量と魚の摂取量と7年間の総死亡数との相関を調べた。</td>
<td>毛髪中の水銀量</td>
<td>生存1,755人、死亡78人</td>
</tr>
<tr>
<td></td>
<td>フィンランド</td>
<td>魚の摂取量</td>
<td>7年</td>
<td>対象者数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.20 mg/g</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>C.G. Hallgren</td>
<td>症例対照研究：78人（男62人、女16人）の初診時魚油摂取を生じた人と、コントロール158人（男124人、女32人）を対象に観察観察中の水銀量、血中リゾシリンのα-3系脂肪酸（20:5+22:6）量を調べた。</td>
<td>血中のα-3系</td>
<td>生存1,755人、死亡78人</td>
</tr>
<tr>
<td></td>
<td>スウェーデン</td>
<td>結果：心筋梗塞を発症した人は、血中のα-3系脂肪酸の多い方、魚の摂取量が少ないほど、心筋梗塞の発症頻度が増加した。</td>
<td>血中のα-3系</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.50 mg/g</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>K. Yoshizawa</td>
<td>観察研究：40-75歳の男性5737人から、1986年の魚の摂取量を測定し、5年間フォローテレビ470人が虚血性心疾患を発症した。発症しなかったコントロール64人を対象とし、爪の水銀量と虚血性心疾患の発症頻度相関を調べた。</td>
<td>クモの平均水銀量</td>
<td>非発症101人、発症85人</td>
</tr>
<tr>
<td></td>
<td>米国</td>
<td>結果：水銀摂取量と虚血性心疾患の発症頻度との相関はなかった。</td>
<td>非発症85人、発症94人</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.15 mg/g</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>E. Guilar</td>
<td>症例対照研究：フィンランド、ドイツ、イタリア、オランダ、ノルウェイ、ロシア、英米、スペイン、スイスの男性心筋梗塞（684人）、コントロール724人を対象とし、爪の水銀量と脂肪組織でのDHA量を調べ、心筋梗塞発症との相関をみた。</td>
<td>クモの平均水銀量</td>
<td>非発症96人、発症91人</td>
</tr>
<tr>
<td></td>
<td>米国</td>
<td>結果：水銀摂取量が多いと心筋梗塞が増加した。</td>
<td>非発症96人、発症91人</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.11 mg/g</td>
<td>0.17</td>
<td></td>
</tr>
</tbody>
</table>
ウェーデンの症例対照研究では、赤血球中の水銀量が多いほど、心筋梗塞の発症頻度が減少した。このように、結果が相関するため、魚油摂取由来と思われる水銀が、虚血性心疾患に影響を及ぼすかどうかは不明である。

このように、実際には、普通の魚を摂取しても、水銀による障害が認められる可能性は非常に低いと思われるが、胎児では軽微な異常が発症することは否定できない。一方、DHA は胎児の発育に必要である。このため、妊娠時には水銀が少ない魚、たとえば、イワシ、サケ、アジ、ウナギなど、小型の魚摂取が勧められる。

魚に含まれる他の重金属、環境汚染物質の影響については、現在まで報告はきわめて少ないが、将来問題となる可能性があり、今後の研究報告に注視しておく必要がある。

<table>
<thead>
<tr>
<th>虚血性心疾患発症への影響</th>
<th>オッズ比</th>
<th>相対危険</th>
<th>文献番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1 (補正なし)</td>
<td>2.26</td>
<td>1.93</td>
<td>82</td>
</tr>
<tr>
<td>Model 1 (年齢、タバコの補正)</td>
<td>1.21</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>Model 2 (危険因子の補正)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 3 (n-3 系の摂取量の補正)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>オッズ比</th>
<th>1.00</th>
<th>1.00</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>相対危険</td>
<td>0.83 (0.55-1.25)</td>
<td>0.92 (0.60-1.41)</td>
<td>0.93 (0.60-1.43)</td>
</tr>
<tr>
<td>文献番号</td>
<td>84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

|オッズ比| 0.86 (0.61-1.22) | 0.93 (0.64-1.36) | 0.86 (0.49-1.50) |
|文献番号| 83 |

|オッズ比| 1.00 | 1.00 | 1.00 |
|文献番号| 82 |
終わりに

このように、日本人の食事摂取基準（2005年版）の脂肪摂取基準は、いままでの関連の論文をまとめ、その概念を抽出し、さらに現在の日本人摂取量を考慮し、策定されている。食事摂取基準を実際の栄養指導に用いる場合、これらの値が設定された根拠を理解しておくことはきわめて大切である。

食事摂取基準は環境の変化で変わるものである。脳出血よりも脳梗塞の予防が重要になりつつあり、n-3系脂肪酸の十分な摂取はより重要性を増している。また、信頼できる大規模研究の結果が発表されると、以前の値を変更する必要が出てくるかもしれない。このため、5年ごとに見直されている。この総説は次回食事摂取基準（2010年版）の参考にすれば幸いである。

この総説は独立行政法人国立健康・栄養研究所所営交付金、栄養所要量策定のための系統的レビュー（主任研究者、佐々本敏）の一環としてまとめられた。

文献
1) 厚生労働省策定（2005）日本人の食事摂取基準。第一版。東京。
2) 健康・栄養情報研究会編（1999）第6次改定日本人の栄養所要量—食事摂取基準版。第一版。東京。
13) 健康・栄養情報研究会編（2003）国民栄養の現状—平成13年厚生労働省国民栄養調査結果一、健康・栄養情報研究会，第一版。
74) Grubb BP (1990) Hypervitaminosis A following...
151

138) D'Almeida A, Carter JP, Anatol A, Prost C (1992) Effects of a combination of evening primrose oil (gamma linolenic acid) and fish oil (eicosapentaenoic + docosahexaenoic acid) versus magnesium, and versus placebo in preventing

Innis SM, Adamkin DH, Hall RT, Kaihan SC, Lair C, Lim M, Stevens DC, Twist PF, Diersen-Schade DA, Harris CL, Merkel KL, Hansen JW (2002) Docosahexaenoic acid and arachidonic...

追記

本稿の脱稿後に厚生労働省から「妊婦への魚介類の摂食と水銀に関する注意事項の見直しについて」の勧告が平成17年8月に出された。耐容摂取量が水俣病でなく、表22で示してあるフェロー諸島、セイシェルでの胎児への影響調査に基づき決められたため、変更になり、14.6 μg/day（体重50kg当り）より厳しくなっている。更に魚の平均摂取量でなく実際の食事での摂取量を考慮したため、マグロも注意対象になった。妊婦はクロマグロ、メバチマグロは週1回（週80g程度）まで、ミナミマグロは週2回（週160g程度）までが目安となる。
Concept of Reference Intake of n-3 Polyunsaturated Fatty Acids in the Japanese Population

Osamu Ezaki,*,1 Shinichi Sato,2 Masanobu Sakono,3 Yoshihiro Miyake,4 Natsuko Mito,1 and Mitsumasa Umesawa5

(Received May 25, 2005; Accepted October 20, 2005)

Summary : Basic principles of Japanese dietary reference intakes (DRIs) published in 2005 for n-3 polyunsaturated fatty acids (n-3 fatty acids) are described in detail, and the evidence tables used for their establishment are presented. Since n-3 fatty acids are essential fatty acids and their deficiency leads to dermatitis and growth retardation, their minimal requirement (=lower limit) should be established. However, since only a few case reports of n-3 fatty acid deficiency have been published, it is difficult to establish their minimal requirement. Therefore, the concept of adequate intake (AI), representing the median intake of the Japanese population, was adopted. As most contemporary Japanese do not suffer from dermatitis and growth retardation, the median intake of n-3 fatty acids by age and sex was used as the AI of n-3 fatty acids. As AI is a rather expedient procedure, it is likely that the actual minimal requirement is lower than the AI level. Reports published to date have demonstrated that sufficient intake of n-3 fatty acids can prevent ischemic heart disease. The median intake of n-3 fatty acids by Japanese is much higher than that in the group showing highest intake of n-3 fatty acids among Americans. Thus, intake of n-3 fatty acids equivalent to the median for the Japanese population is considered to adequately decrease the incidence of ischemic heart disease. For Japanese individuals over 18 years of age, the median intake of n-3 fatty acids was set as the lower limit of the tentative dietary goal (DG) for preventing lifestyle-related diseases. The lower limit of DG for individuals over 18 years of age thus became 2.0–2.9 g/day. Adverse effects of a higher intake of n-3 fatty acids are also described. Although there have been many reports of increased bleeding time and elevated LDL-cholesterol concentrations, there have been no reports of increased occurrence of clinically adverse bleeding or ischemic heart disease. Therefore, we did not set an upper limit for n-3 fatty acid intake. In the DRIs for 2005, the effects of heavy metals such as mercury and cadmium and chemical environmental pollutants such as dioxins and PCBs present in fish in very small amounts were not considered. However, in this article, evidence tables related to consumption of mercury from fish are presented and the safety of fish intake by pregnant women is discussed.

Key words : dietary reference intakes, n-3 fatty acids, fish, ischemic heart disease, mercury

* Corresponding author

1 National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan
2 Osaka Medical Center for Health Science and Promotion, 1-3-2 Nakamichi, Higashi-ku, Osaka 537-0025, Japan
3 Department of Biochemistry and Applied Biosciences, University of Miyazaki, 1-1 Gakuen Kibana-dai Nishi, Miyazaki 889-2192, Japan
4 Department of Public Health, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
5 Department of Public Health Medicine, Doctoral Program in Social and Environmental Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8575, Japan