解説

ユーザビリティとユニバーサルデザイン†

澤田 久美子*

1. はじめに

日本は、2015年には約4人に1人が65歳以上の高齢者という、他国には見られない超高齢社会を迎えようとしている。また、高齢化と同時に少子化が進み、日本人口構成は大きく変わってくる。それはすなわち、多くの高齢者のために生きがいのある生活をするための支援が必要になることである。しかし、従来の商品開発は、健全な若者を対象としたもの多かったため、これは食べられず・生活面にくいと感じる人の割合が徐々に増えてくるものと予測される。

一方、急速な高齢人口の激化情報化社会を変貌し、製品の高度化・多機能化が進展している。人工物と人との関係（インタフェース）も大きく変わってきた。そこで情報処理が関係し、ブラクボックス化が進み、ユーザーにとっては単純には理解できない、なじみにくいものが増えている。情報化により、確実に便利になることが多いが、誰かと公平にその恩恵に恵まれるためにはまず皆が存在しているということを理解しなくてはならない。「デジタルタイム」と言わされるいわゆる情報格差が、大きな社会問題となりつつある。

バイアリティデザインからユニバーサルデザイン（UD）へと、言葉や概念もようやく一般に浸透してきた。当初建築の分野から派生していったことから、物理的側面でのUD化が中心であったと思われるが、むしろ認知的側面に捉えた、情報のUD化が急務と考えてよいだろう。

企業において、ユーザビリティの研究・開発が浸透しつつある中、ユニバーサルデザインへの取り組みその延長として選れて通れないものとなっている。

2. ユニバーサルデザイン開発の考え方

2.1. ユニバーサルデザインの理念

そもそもユニバーサルデザインという理念は、米国の工業デザイナーであり建築家であるロン・マイス氏が1970年代に提唱した理念である。「バイアリティデザイン」は文字通りバリア（障壁）を取り除くことが目的であるのに対し、「ユニバーサルデザイン」は初めからバリアを作らないことが目的である。ロン・マイス氏はこの考え方を以下のようなUDの7原則としてまとめている。

a) 公平に利用できる
b) 使用の柔軟性を持たせる
c) 単純で誰もが直感的に理解できる
d) 情報を知覚しやすくする
e) 間違いに寛容に対処する
f) 疲勞や身体的負荷を少なくする

さらに使用するための寸法・空間とする
また、同時に当社デザイナー研究室は個々の製品の使いやすさみならず、空間やシステム全体、サービス全体としての使いやすさや生活のしやすさを追求することを目指すという意図から前述のUD7原則に加え、

f) 連続性に配慮する

a) 適性を確保する

b) 高次心の寄りを求める

という3項目を加えた。製品として、デザインとしての魅力がなければ、単に問題点を解決しただけではユーザーに受け入れられないと考えている。

2.2. ユニバーサルデザイン開発の目標

では、これらの理念をどのようにして達成するのか。我々は「誰もが生活しやすい環境づくり、使いやすいモノづくり」をUD開発の目標として、「全ての人々にとって満足の高い生活環境と共用品の提供を目指す」というスローガンを掲げた。つまりUDとはある完成されたモノを示すのではなく、少しでも使いやすい製品を提供するための日々の開発活動そのものであると認識している。

デザイン研究所では、製品デザイン開発を進め中で、「ユーザビリティも色や形と同様にデザインの構成要素の一部であると考え、以前からヒューマンインタフェース研究に取り組んできたが、さらにユニバーサルデザイン開発ユーザビリティ開発活動の延長として捉え、推進している。

「ユーザビリティ」とはユーザにとっての「使いやすさ」を表す。使いやすさの中には操作性や機能性だけでなく、使い心地、快適性といった感性的な満足

† Usability and Universal Design
Kumiko SAWADA
* 三菱電機（株）デザイン研究所
Industrial Design Center, Mitsubishi Electric Corporation

2004/4
度も含む。また、これは製品やサービスの品質の一部であると認識している。ここでいうユーザとはその製品によってターゲットユーザーを指す。
これに対し、「ユーバーサルデザイン」は、どんなユーザーにとっても使いやすいことが求められる。この場合のユーザは「年齢や性別、能力の如何に関係なく、できる限り最大限全ての人」を指す。すなわちターゲットユーザーとなる層を限りなく拡大し、1人でも多くの人に使いやすくしていくことが大きな目標である。決して障害者や高齢者のみを対象として開発するものではなく、様々な能力の差に配慮することが重要と考えている。

3．ユーバーサルデザイン開発の視点

我々はヒューマンインタフェース開発の視点として、感性的側面（高次の人間機能）、認知的側面（認知・思考）、身体的側面（心理・生理）の大きく3つに分けた視点をとっている（図1）。製品を使用する際の使いにくさや扱いにくさは、これらの各側面での不適合要素が絡み合って生じる。

HIの3側面

UD開発の基本的配慮項目として、上記3側面をベースに、さらにUD独自の視点を加え、以下のようなチェックリストを作成し、各開発段階での問題点把握やアイデア展開への活用を図っている。ここでは大項目について紹介する。

1）ゴールの明確化

まず大前提として、ユーザと使用環境を把握し理解することが肝心であり、あえていうとした。ユーザーであるか（UD開発であるかと言って漠然と「全ての人」とするのではなく）、その製品のタスクは何か、使用環境はどうか等をまず整理し、開発目標を立てることが必要である。

2）気持ちにフィット

これは、上記「感性的側面」に関する要素である。つまり、商品としての完成度、魅力、価格等を含めた市場性、快適性などの項目を設けた。

2）簡単でわかりやすい使い方

これは、特に「認知的側面」に関する項目で、操作性の善し悪しに直接的に関係する、理解しやすい、間違いにくい、覚えやすい、といった項目を設けた。

3）識別しやすい表示・表現

これは、主に身体機能に依存する項目で、表示手段、操作ボタンや表示、報告音などの識別型、すなわち見えやすい、聞きやすいといった基本的な要素が含まれる。

4）快適な姿勢・身体的負荷への配慮

主に「物理的側面」に関して、余計な力が必要でないか、快適な姿勢で操作できるか、などの身体機能そのものに依存する項目である。

5）安全性と利便性への配慮

安全や安全への配慮はUD開発には必要不可欠であり、また数理やメタニンス性などの利便性についても新たな商品企画を行う上で考慮すべき項目である。

4．ユーバーサルデザイン開発のアプローチ

4.1．ユーバーサルデザイン開発のプロセス

我々がUDという大きな課題に取り組み始めた時、まず始めに行ったことは、様々なユーザの中で、製品を使用する際最も困難な状況、すなわち障害者や高齢者について正しく理解することだった。そしてその困難さを把握することで、共通の問題点や解決のためのヒントを得るというアプローチを考えた。100%の解決策を求めるのではなく、できることから解決し、新たなアイデアを創出することが目的である。

この考えをベースに、開発プロセスの大まかな流れとしては、1）ユーザ特性の把握・問題点の抽出、2）アイデア展開・改善・企画提案、3）評価・検証、というプロセスを繰り返し行う。

前述のように、UD開発はユーザビリティ開発の延長として考えているため、通常のヒューマンインタフェース開発プロセスほど大きく変わることはない。人間中心設計プロセスで中心になるユーザー評価が大きな役割を果たす。ユーザーを理解し、製品を使う上で使いにくい、すなわちいわゆる側面での不適合性を解消し、ユーザーが機械に合わせるのではなく、機械がユーザーに合わせることが望まれる。人間とその行動をいかに捉えるかがキーソである。

以下、開発のプロセスに沿って、ユーザ把握～開発提案のベースとなるユーバーサルデザインの評価、検証を中心に、事例を交えて紹介する。
4.2. ユーザー特性の把握・問題点の抽出
まず、ユーザー特性と使用環境を整理し、各ユーザーにとってどのような使いにくさが存在するのかを把握する。ユーザーと対象とする製品との関わりの動機、すなわち代表的なタスクを想定し、そのユーザー行動に沿って問題点を抽出していく。この時対象ユーザーあるいは体機能別のマトリクス表にして網羅すると把握しやすい。
この問題点把握の方法としては、製品を使用する現場を見てユーザーの行動を観察する、あるいは作業の声の聞くことが必要である。

4.3. アイデア展開〜仮説の検証
次に抽出した問題点について改善策や新たな製品企画へのアイデアを展開し、その案（仮説モデル）の検証・評価を行う。通常プロトタイプモデルやシミュレーションモデルを対象に評価を行うことが多い。評価対象により、ユーザーテスト法や、パフォーマンステスト等を行い、デザイン案の絞り込みや妥当性を検証する必要がある。
物理的な使いやすさ（持ちやすさ、押しやすさ、握りやすさ等）、表示や文字の見やすさ等を検証するには、いくつかのモデルを比較対象としてパフォーマンステストや、アンケート形式により評価する方法がある。パフォーマンステストとは、操作時の誤り率や操作時間等を指標にし、操作性、使い勝手の善し悪しを測る方法である。
図5は、ユニバーサルデザイン対応エレベーターで、操作ボタンの文字を凸文字にし、触知により数字を判断できるようにした。この凸文字の開発に於いて、縫
り追視覚障害者モニターを対象に評価を行い、触知しやすい文字の形状と書体を決定している。

同時に、この検査では従来専用にあった操作盤を側面に設置することで、操作性にどう影響するのか、
廃線の調査及び子供、車椅子使用者の場合の使い勝手を検証した。

図6: 操作盤の評価

図7:携帯電話の視認性・押しやすさ評価

図7は携帯電話の文字の視認性とキーの押しやすさについて評価を行ったものである。高齢者と若年者と
ユーザー層ごとの比較を行うことにより、特微が明快になる。

4.4. 製品の評価

UD開発に100％の正解はないと言っても良い。した
がって、最終的には製品化したものを実際の現場または
ユーザーテストにより評価を行い、次の開発にフィードバックすることが非常に重要である。

図8は前述のエレベーター、全自動洗濯機の製品評
価の例である。

以上のように、開発過程で繰返しユーザー評価を
行い、不適合な要素を少しでも取り除き、より多くの
人々に快適に使うことのできる製品作りを目指す。何
より、人間を理解し把握することが人間中心設計の要
であると言える。

5. ユニバーサルデザイン開発における課題

これまで、様々なアイテムでユーザビリティ評価を
実施して来たが、特にユニバーサルデザイン開発に関
連し、高齢者や障害者のモニターを対象に実施する評
価においてはいくつかの課題がある。

ひとつは、特に高齢者の場合、主観評価において、
機械が悪いのではなく使えない自分が悪いと思う傾向
が強いこと、さらに今回使えないかったとしても「すき
慣れる」「慣れれば大丈夫」といった発言が多いことで
ある。プロトコル解析の記録や、パフォーマンスデータ
を見れば、その操作がわかりにくいかったことは明確
だったとしてもそのような発言になり、ギャップが生
じる。これは、自分自身使えないことが恥ずかしいと
思う気持ちや、評価をしている我々スタッフへの思いやり
があるのではないかと想像する。したがって、主観評価
結果はあくまで参考として、客観データと合わせて判
断すべきである。また、パフォーマンスデータだけで
判断することも危険である。はじめに述べたように、
ユーザビリティは単に使い勝手だけの問題ではない
と、感性レベルでの満足度が伴わないと製品として成
り立たない。いくら使い勝手が良くても、見た目のデ
ザインが良くないとか、いかにも年寄り向けといった
製品では顧客満足は得られないのである。

加齢と共に当然記憶力は衰退する訳で、なるべくその
ような記憶や経験に頼らなくても直感的に操作できる
ものが望ましい。またパソコンユーザーか否かで特に
情報機器の操作性について大きな差が生じる。これは
経験の差によるところが大きく、GUI構造の理解の仕
方が全く違う。加齢に伴う認知能力の差も当然
あるが、今後は経験の差や機器に対するリテラシーの
差に対する配慮も重要になってくると考えられる。

6. 終わりに

ユニバーサルデザインは、バリアフリーデザインが
進化し、建築分野における取り組みが先行して発展し
た概念だと思うが、今後は特に情報分野におけるユニ
バーサルデザイン開発の取り組みが必要不可欠になる
言う。また、ユニバーサルデザインは理想論ではなく、どのように実践するのか、という成果が問われる時代になった。UDは障害者と高齢者だけを対象とするものではないが、例えば、視覚障害といっても人それぞれ多様な症状がある。そのような様々な能力の異なる人間をきちんと把握し、正しい解決策を導くことが求められている。

参考文献
[1] 三菱電機（株）デザイン研究所編．「こんなデザインが使いやすさを生む」，工業調査会，2001．
（2004年2月12日 受付）

著者紹介
澤田 久美子

1983年筑波大学芸術学部芸術学科卒業。同年、三菱電機（株）入社。デザイン研究所にて、家電製品を中心としたデザイン開発を担当。インタフェースデザイン部に所属し、主にデザイン開発におけるユーザビリティ評価、ユニバーサルデザインを中心とした研究に従事。ヒューマンインタフェース学会会員。

三菱電機技報，Vol16，P50-P53，2002．

著者紹介
澤田 久美子

1983年筑波大学芸術学部芸術学科卒業。同年、三菱電機（株）入社。デザイン研究所にて、家電製品を中心としたデザイン開発を担当。インタフェースデザイン部に所属し、主にデザイン開発におけるユーザビリティ評価、ユニバーサルデザインを中心とした研究に従事。ヒューマンインタフェース学会会員。