スケールフリーネットワーク（Scale-Free Network）

近年、インターネットから生物、化学、社会経済など様々な分野に広がる共通の話題で盛り上がっている。キーワードはスケールフリーネットワークである。インターネットはコンピュータをノードとする複雑で巨大なネットワークであるが、生物の代謝系も化学物質をノードとする複雑なネットワークであり、人間の社会コミュニティも人をノードとするネットワークと言えることができる。このとき、あるノードから他のノードへのリンク数（k）に着目すると、これらのネットワークにおいてkの確率分布P(k)が三重共通で、P(k)〜k^−2となるのである。これはべき分布（Power-law）と呼ばれる、リンク数の上限に典型的な限界が存在しないことを意味している。つまり、ほとんどのノードは少数のリンクしか持たないものの、極少数の多くのリンクを有するノードが存在するということである。Webのリンク空間や文書の共著関係、代謝系のネットワークなどがスケールフリーネットワークであることが確認されている。また、スケールフリーネットワークと並んで出てくるキーワードにスモールワールドがある。特に「世界は狭い」と言えることがあるが、例えば爆発的に拡大しているインターネットにおいて、任意のWebページから何回リンクをクリックすると最も遠いページにたどり着けるだろうか？実は19回程度であることが推定されている。また任意のAさん、Bさんを選んだ、AさんからBさんに入る手紙を送り届ける場合、高々平均5.5人を介することで届けられたというアメリカでの実験があり、実際世界は狭かったのである。このような大規模で複雑なネットワークであるにもかかわらず、任意の2ノード間の距離が非常に短い特徴を有するネットワークをスモールワールド（Small World）と呼び、スモールワールドにもスケールフリーネットワークと同様にべき分布という特性を有するものが存在する。スモールワールドも自然界から人工物にいたる様々なネットワークに共通して見られる構造であり、これらのネットワークが形成される原因を解明することで、インターネットのトラフィック制御から経済の安定化、新薬の開発など様々な分野への応用が期待されている。

（大阪大学大学院 情報科学研究科情報数理学専攻 藤原 聡）

デッドレコニング(Dead Reckoning)

船や航空機が自身位置を推定しなくとも目的地まで移動する航法を「推測航法（ディッドレコニング：dead reckoning）」と呼ぶ。同様に、ロボット技術においても、移動ロボットが自身位置を推定しながら目的地まで移動する手法を「ディッドレコニング」と呼ぶ。一般に、ディッドレコニングは車輪型の移動ロボットに適用されるが、この場合、車輪の回転角度からロボットの移動量を求め、その値から自己位置の算出（これを「オドメトリ（odometry）」と呼ぶ）を行う。しかし、車輪の回転角度あくまでも車輪の回転角度であって、ロボットの移動量ではない。なぜなら、車輪の回転は地面の滑りが生じてしまうためである。滑りは、車輪と地面と摩擦、車輪のトルク、インターシャなど様々な要因によって生じ、複雑である。このため、車輪の滑りを推定することは困難とされている。屋内を移動するロボットの場合には、車輪と地面との摩擦がほぼ一定であると仮定し、ロボットの動作から誤差の程度を推定する方法が取られているが、誤差はロボットの走行距離に応じて累積的に大きくなってしまう。このため、走行距離に応じて、なんらかの自己位置補正を行わなければならず、また屋外環境では、GPSによって自己位置を検出する方法が取られているが、広大な空間を移動する船舶や航空機とは異なり、ロボットの場合では比較的狭隘な環境を想定しなければならない。このため、より精度の自己位置推定が求められる。近年では、RTK-GPSによる高精度の自己位置推定が容易だが、都市部や山間部等の遮蔽物の多い環境では、GPS衛星を観測することによる自己位置精度の低下を避けることはできない。

（宇都宮大学大学院 工学研究科情報制御システム科学専攻 尾崎功一）