喘息小児の気道過敏性に対するレビラスト長期
投与の効果

こくぶ小児科
国 府 譲

Key words: P-V リサージュ法 吸入アセチルコリン閾値 気道過敏性

要 旨
小児の気管支喘息児12例に、8 mg/kg/day のレビラストを約1年間経口投与し、投与前後におけるアセチルコリン吸入閾値を測定した。閾値の測定には、既報の P-V リサージュ法を加味したアストグラフに依った。結果は、8例に閾値の上昇が認められ、統計学的に有意な閾値の改善を得た。

結 言
気管支喘息の病態には気道過敏性がその基本的な病態を形成すると考えられている。気道過敏性亢進の程度は喘息患者の重症度と関連するといわれており、その形成機序や治療法について、近年種々の報告がなされている。

今回著者は、気管支喘息に対する有用性が小児領域においても確められている抗アレルギー薬、レビナスト (ロメット®) を用い、約1年間の長期投与を行ってアセチルコリン吸入閾値を測定し、気道過敏性の変化を観察したので報告する。

対象および方法
対象は、本院に通院する気管支喘息児12例で、その背景は表1に示す。年齢は4.3歳〜13.5歳（平均8.0±0.9歳）、重症度は、重症1例、中等症1例で、他の軽症であった。

方法は、8 mg/kg/day のレビラストを朝晩2回に分けて約1年間（7〜19か月、平均12.8±0.7か月）経口投与し、上記12例について治療開始前および治療終了後の吸入アセチルコリン閾値を測定し、また、喘息症状の推移については喘息日記により喘息発作点数を求め追跡した。発作点数は大発作3点、中発作2点、小発作1点とした。

アセチルコリン閾値の測定はレビラスト投与期間が1年であるため、投与終了後の検査月は投与前検査月と略同様であるという風に近接しており、また測定時刻は午後12時であった。そして測定前後とも12時間以内に気管支拡張剤を服用していないことを確認した後、アストグラフを用いてアセチルコリン希釈標準液を吸入させ、この標準液濃度は表2に示す。呼吸抵抗 Rrs の変化点（閾値）の判定に際して、シンクロスコープ SS-5100 を用いた P-V リサージュ法を用いた。本法の原理については既に詳細を報告したが、アストグラフ測定の指標である呼吸抵抗 (Rrs) をその構成要素である口腔内圧 (P) と口腔内気流速度 (V) として布拉ウン管オシログラフ (シンクロスコープ SS-5100) に入力し、P を X 軸、V を Y 軸に投影せめした P-V リサージュを画かせ、P は一定に調整されているので V の変化はリサージュ傾斜角度 (θ) の変化として表現される。基礎検査の結果、リサージュ傾斜角増加分 (Δθ) が5°あるいはそれ以上であるとき気道収縮がアセチルコリンによって誘発されていることを知った（図1）。この方法は発振周波数 7 Hz で行うリサージュの動揺は少ない、また、もともと Rrs 基線動揺のない強い幼児あるいは年長児に行っても Rrs 変化点（閾値）を容易に読み取ることができる利点を有する。

ネプライザー各管のアセチルコリン希釈標準液濃度は表1の通りであるが、簡単のためアセチルコリン閾値はこの管番号で表すこととした。なお、各管1分間宛の噴霧中にθ が5°変化点を示した場合は、直ちに吸入を中止そして、その時間的割合をみて1管以下の小数点で表示した。また、前回に比し0.5管以上の増減がある場合を変動ありとした。

なお、レビラストを投与せずに約1年間の治療を行った喘息患者11例について、1年間の治療期間の前後で同様にアセチルコリン閾値の測定を行い、対照群と
表1 患者背景

<table>
<thead>
<tr>
<th>番号</th>
<th>患者名</th>
<th>性</th>
<th>年齢（歳）</th>
<th>体重（kg）</th>
<th>病気</th>
<th>発作型</th>
<th>季節性</th>
<th>症状</th>
<th>期間（年）</th>
<th>合併症</th>
<th>血中好酸球（％）</th>
<th>IgE RIST</th>
<th>IgE RAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>13.5</td>
<td>44</td>
<td>A</td>
<td>慢</td>
<td>非</td>
<td>中</td>
<td>AD</td>
<td>12</td>
<td>4.1</td>
<td>553</td>
<td>HD (9.0)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>12.8</td>
<td>55</td>
<td>A</td>
<td>慢</td>
<td>非</td>
<td>軽</td>
<td>AD</td>
<td>12</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>11</td>
<td>33</td>
<td>A</td>
<td>発</td>
<td>非</td>
<td>軽</td>
<td>AD</td>
<td>9</td>
<td>8</td>
<td>1621</td>
<td>HD (1.0)</td>
<td>スギ (21.0)</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>9</td>
<td>26</td>
<td>A</td>
<td>発</td>
<td>非</td>
<td>軽</td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td>HD (2.0)</td>
<td>カモガヤ (4.2)</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>8</td>
<td>22</td>
<td>A</td>
<td>発</td>
<td>非</td>
<td>軽</td>
<td>PAR</td>
<td>5</td>
<td>10</td>
<td>555</td>
<td>HD (16)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>7.8</td>
<td>36</td>
<td>A</td>
<td>慢</td>
<td>非</td>
<td>重</td>
<td>AD</td>
<td>5</td>
<td>3</td>
<td>1713</td>
<td>HD (1.7)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>7.5</td>
<td>22</td>
<td>A</td>
<td>発</td>
<td>非</td>
<td>軽</td>
<td>AD</td>
<td>5</td>
<td>3</td>
<td>927</td>
<td>HD (6.2)</td>
<td>スギ (9.6)</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>7</td>
<td>22</td>
<td>A</td>
<td>発</td>
<td>非</td>
<td>軽</td>
<td>AD</td>
<td>3</td>
<td>6</td>
<td>23</td>
<td>HD (0)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>5.3</td>
<td>17</td>
<td>A</td>
<td>発</td>
<td>非</td>
<td>軽</td>
<td></td>
<td>2</td>
<td>3</td>
<td>302</td>
<td>HD (0.5)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>4.8</td>
<td>23</td>
<td>A</td>
<td>発</td>
<td>非</td>
<td>軽</td>
<td></td>
<td>2.5</td>
<td>1</td>
<td>216</td>
<td>HD (14.0)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>4.5</td>
<td>20</td>
<td>A</td>
<td>発</td>
<td>非</td>
<td>軽</td>
<td></td>
<td>2</td>
<td>1</td>
<td>62</td>
<td>HD (0)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>4.3</td>
<td>16.5</td>
<td>A</td>
<td>発</td>
<td>非</td>
<td>軽</td>
<td></td>
<td>2</td>
<td>6</td>
<td>597</td>
<td>HD (2.7)</td>
<td></td>
</tr>
</tbody>
</table>

A：アトピー型  慢：慢性型  発：発作型
軽：軽症  中：中等症  重：重症
AD：アトピー性皮膚炎  PAR：アレルギー性鼻炎

表2 アセチルコリン希釈液濃度

<table>
<thead>
<tr>
<th>管番号</th>
<th>アセチルコリン濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.5 mg/ml</td>
</tr>
<tr>
<td>9</td>
<td>1.25 mg/ml</td>
</tr>
<tr>
<td>8</td>
<td>0.25 mg/ml</td>
</tr>
<tr>
<td>7</td>
<td>0.12 mg/ml</td>
</tr>
<tr>
<td>6</td>
<td>0.06 mg/ml</td>
</tr>
<tr>
<td>5</td>
<td>0.06 mg/ml</td>
</tr>
<tr>
<td>4</td>
<td>0.03 mg/ml</td>
</tr>
<tr>
<td>3</td>
<td>0.0195 mg/ml</td>
</tr>
<tr>
<td>2</td>
<td>0.0075 mg/ml</td>
</tr>
<tr>
<td>1</td>
<td>0.00487 mg/ml</td>
</tr>
</tbody>
</table>

した。対照群の年齢は4～13歳、平均7.5歳で重症1例、中等症1例、軽症9例であった。投与群および対照群の経口併用薬については、テオフィリン（テオスロース錠テオロング）、メブチン（錠、液）、ベネトリフ（錠、液）を用い、吸入併用薬にはサルツノール（ベネトリフ）を用いた。レビリナスト以外の抗アレルギー剤やステロイド剤は使用していない。併用薬量は各薬剤の1回量を1点として評価加算し全症例の平均点数を2カ月毎にグラフに表した。
なお、閾値のデータの有意性検定にはpaired Student t testを用いた。

成績

12例中、喘息日誌によって1年間喘息症状を追うことができた8例についての喘息発作数の推移は表3、図2にみられるように、3カ月目以後下降安定し、11～12カ月目においては前年より症状が著明に抑えられた。吸入アセチルコリン閾値の推移は表4の如くである
アセチルコリン吸入前

アセチルコリン吸入後

\[ \theta : \text{リサージュ傾斜角} \quad \Delta \theta : \text{リサージュ傾斜角増加分} \]

図1 アセチルコリン吸入前後のP-Vリサージュ

表3 レピリナスト1年間投与中の月別発作点数の推移  n=8

<table>
<thead>
<tr>
<th>番号</th>
<th>患者名</th>
<th>投与前</th>
<th></th>
<th>レピリナスト投与期間（月）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1ヶ月</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>12</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>27</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>6</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>15</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>10</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>平均</td>
<td></td>
<td>10.8</td>
<td>9.6</td>
<td>12.8</td>
</tr>
<tr>
<td>S. E.</td>
<td></td>
<td>2.7</td>
<td>3.6</td>
<td>3.4</td>
</tr>
</tbody>
</table>
表4 レピリナスト投与前後における吸入アセチルコリン閾値 n=12

<table>
<thead>
<tr>
<th>番号</th>
<th>患者名</th>
<th>性別</th>
<th>年齢（歳）</th>
<th>重症度</th>
<th>投与期間（月）</th>
<th>投与前</th>
<th>投与後</th>
<th>判定</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>F</td>
<td>13.5</td>
<td>中</td>
<td>13</td>
<td># 4</td>
<td># 4</td>
<td>→</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>M</td>
<td>12.8</td>
<td>軽</td>
<td>12</td>
<td>4</td>
<td>5</td>
<td>ノ</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>M</td>
<td>11</td>
<td>軽</td>
<td>12</td>
<td>3.5</td>
<td>4.5</td>
<td>ノ</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>M</td>
<td>9</td>
<td>軽</td>
<td>11</td>
<td>5.7</td>
<td>5.3</td>
<td>→</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>M</td>
<td>8</td>
<td>軽</td>
<td>14</td>
<td>4.5</td>
<td>6</td>
<td>ノ</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>F</td>
<td>7.8</td>
<td>重</td>
<td>19</td>
<td>3.5</td>
<td>4</td>
<td>ノ</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>M</td>
<td>7.5</td>
<td>軽</td>
<td>13</td>
<td>4</td>
<td>4.3</td>
<td>→</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>F</td>
<td>7</td>
<td>軽</td>
<td>14</td>
<td>6</td>
<td>6.5</td>
<td>ノ</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>M</td>
<td>5.3</td>
<td>軽</td>
<td>14</td>
<td>4</td>
<td>4</td>
<td>→</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>F</td>
<td>4.8</td>
<td>軽</td>
<td>13</td>
<td>4</td>
<td>5.3</td>
<td>ノ</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>F</td>
<td>4.5</td>
<td>軽</td>
<td>12</td>
<td>6</td>
<td>6.5</td>
<td>ノ</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>F</td>
<td>4.3</td>
<td>軽</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>ノ</td>
</tr>
</tbody>
</table>

平均±s.e.  
12.8 ± 0.8  4.4 ± 0.3  5.0 ± 0.3

* p<0.01

表5 年齢別吸入アセチルコリン閾値変化

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>投与前</th>
<th>投与後</th>
<th>paired Student-t 検定</th>
</tr>
</thead>
<tbody>
<tr>
<td>6歳未満</td>
<td>4</td>
<td>4.5±1.0</td>
<td>5.2±1.0</td>
<td>p&lt;0.1</td>
</tr>
<tr>
<td>6歳以上9歳未満</td>
<td>4</td>
<td>4.5±1.1</td>
<td>5.2±1.2</td>
<td>p&lt;0.1</td>
</tr>
<tr>
<td>9歳以上</td>
<td>4</td>
<td>4.3±1.0</td>
<td>4.7±0.6</td>
<td>n.s.</td>
</tr>
<tr>
<td>合計</td>
<td>12</td>
<td>4.4±0.3</td>
<td>5.0±0.3</td>
<td>p&lt;0.01</td>
</tr>
</tbody>
</table>

(単位: 管番号 平均±s.e.)
表4 レピリカスト投与前後における吸入アセチルコリン閾値 n = 12

<table>
<thead>
<tr>
<th>番号</th>
<th>患者名</th>
<th>性</th>
<th>年齢</th>
<th>重症度</th>
<th>投与前</th>
<th>投与後</th>
<th>判定</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KAW</td>
<td>F</td>
<td>13.5</td>
<td>中</td>
<td>4</td>
<td>4</td>
<td>→</td>
</tr>
<tr>
<td>2</td>
<td>WAT-R</td>
<td>M</td>
<td>12.8</td>
<td>軽</td>
<td>4</td>
<td>5</td>
<td>→</td>
</tr>
<tr>
<td>3</td>
<td>KOJ</td>
<td>M</td>
<td>11</td>
<td>軽</td>
<td>3.5</td>
<td>4.5</td>
<td>→</td>
</tr>
<tr>
<td>4</td>
<td>HIR</td>
<td>M</td>
<td>9</td>
<td>軽</td>
<td>5.7</td>
<td>5.3</td>
<td>→</td>
</tr>
<tr>
<td>5</td>
<td>TOM</td>
<td>M</td>
<td>8</td>
<td>軽</td>
<td>4.5</td>
<td>6</td>
<td>→</td>
</tr>
<tr>
<td>6</td>
<td>OHS</td>
<td>F</td>
<td>7.8</td>
<td>重</td>
<td>3.5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SHI</td>
<td>M</td>
<td>7.5</td>
<td>軽</td>
<td>4</td>
<td>4.3</td>
<td>→</td>
</tr>
<tr>
<td>8</td>
<td>NAK</td>
<td>F</td>
<td>7</td>
<td>軽</td>
<td>6</td>
<td>6.5</td>
<td>→</td>
</tr>
<tr>
<td>9</td>
<td>YUH</td>
<td>M</td>
<td>5.3</td>
<td>軽</td>
<td>4</td>
<td>4</td>
<td>→</td>
</tr>
<tr>
<td>10</td>
<td>HOS</td>
<td>F</td>
<td>4.8</td>
<td>軽</td>
<td>4</td>
<td>5.3</td>
<td>→</td>
</tr>
<tr>
<td>11</td>
<td>NIS</td>
<td>F</td>
<td>4.5</td>
<td>軽</td>
<td>6</td>
<td>6.5</td>
<td>→</td>
</tr>
<tr>
<td>12</td>
<td>WAT-W</td>
<td>F</td>
<td>4.3</td>
<td>軽</td>
<td>4</td>
<td>5</td>
<td>→</td>
</tr>
</tbody>
</table>

平均±s.e. 12.8±0.8 4.4±0.3 5.0±0.3

* p<0.01

表5 年齢別吸入アセチルコリン閾値変化

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>投与前</th>
<th>投与後</th>
<th>paired Student-t検定</th>
</tr>
</thead>
<tbody>
<tr>
<td>6歳未満</td>
<td>4</td>
<td>4.5±1.0</td>
<td>5.2±1.0</td>
<td>p&lt;0.1</td>
</tr>
<tr>
<td>6歳以上9歳未満</td>
<td>4</td>
<td>4.5±1.1</td>
<td>5.2±1.2</td>
<td>p&lt;0.1</td>
</tr>
<tr>
<td>9歳以上</td>
<td>4</td>
<td>4.3±1.0</td>
<td>4.7±0.6</td>
<td>n.s.</td>
</tr>
<tr>
<td>合計</td>
<td>12</td>
<td>4.4±0.3</td>
<td>5.0±0.3</td>
<td>p&lt;0.01</td>
</tr>
</tbody>
</table>

（単位：管番号 平均±s.e.）
が、それをグラフに図示すれば図3のようになる。12例中、管番号が増加して閾値が上がったもの（閾値の純化）が8例、不変が4例であった。また全症例でみると、投与前の管番号は4.4±0.3、投与後は5.0±0.3であり、p<0.01で有意な閾値の上昇がみられた。

アセチルコリン閾値の変化を6歳未満、6歳以上9歳未満、9歳以上の群にまとめてみると、表5のようになり、6歳未満および6歳以上9歳未満の群では閾値の上昇（純化）がみられたが、9歳以上の群では有意差は得られなかった。

対照群（レピラニスト非投与群）は11例で、これらの吸入アセチルコリン閾値の推移を図3に示す。治療前の管番号は4.4±0.4、治療後が4.3±0.3であり、差は認められなかった。

なお喘息症状改善の程度と閾値変化との関係を見るために、投与前を含めた最初の2カ月間および最終2カ月間の発作スコアと、閾値変化を対応させてみると、図4のようになりレピラニスト投与群12例中10例は両者間に平行関係を示した。

併用薬の増減については図4に対照群と対比して示した。2群とも投与前後および前半には薬剤点数に差はなかったが、投与群の後半期には点数の著減がみられた。

考 察

抗アレルギー薬は、肥満細胞からのメディエーター遊離を抑制する酸性化合物と、遊離したメディエーター、特にヒスタミンに対する拮抗作用を主体とする塩基性化合物とを分類されるが、今回使用したレピラニストは酸性に属する抗アレルギー薬である。本剤については、ラット腹膜肥満細胞からヒト好温球芽3からのヒスタミン、SRS-Aの遊離抑制作用が血中濃度に近い濃度において確かめられているが、その作用機序から、ECF-A、NCF等の遊離抑制により炎症性細胞の気道への集積を抑制する作用が期待でき、長期投与による気道過敏性コントロールを目指す上で理にかなった薬剤であると考えられる。

本試験で、約1年間のレピラニスト投与により12例中8例にアセチルコリンの吸入閾値の改善が認められ、対照群11例の閾値が変化が認められなかったのに比し、レピラニスト投与群に有意な改善が得られた。

併用薬については、投与群および対照群に用いた併用薬の種類は同じで、投与開始前および開始後4～5カ月迄は平均薬剤点数は対照群との間に差はなかったが、投与群では後半期において点数は著減した。これ

は臨床症状すなわち発作点数の改善（図2）やアセチルコリン閾値の改善とも一致しており、レピラニストの効果を反映していると思われた。

喘息発作は季節性があるため、6～8週間投与で閾値に対する効果を判定する場合はこれを考慮する必要があるが、本試験は1年間の投与とし、気道過敏性測定期間をなるべく合わせるようにしたため、季節性要因は排除できるものと考えた。また、成長に伴って喘息症状が改善するといういわゆるoutgrowingの要因の関与も考慮に入れなければならないが、年齢別の閾値の変化をみると（表5）、6歳未満、あるいは6歳以上9歳未満の比較的低年齢の各群において改善が見られたことや、表7（文献8より引用）にみられるように臨床症状の改善を示した気管支喘息発作の吸入メサコリン閾値の経年推移を本法を用いて測定した以前の結果を照合するとその場合のその改善度は微々たるものであったことから考えて、この要因の影響も消去できるものと考えられた。ただ、被検児のうち9歳以上の群では、投与前の平均閾値は4.3管、投与後は4.7管で、その変動は有意と判定されなかった。これは表7のoutgrowingを示した気管支喘息発作の閾値変動と対比して著しく変動の少ないためである。しかし表7の結果は明らかに臨床上outgrowingを示した群であり、今
### 表 6 吸入アセチルコリン閾値と発作点数

<table>
<thead>
<tr>
<th>症例番号</th>
<th>患者名</th>
<th>アセチルコリン閾値(管番号で表示)</th>
<th>発作点数</th>
<th>判 定</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>#4 #4</td>
<td>17 17</td>
<td>平行</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>#4 #5</td>
<td>17 3</td>
<td>平行</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>#4 #5</td>
<td>25 33</td>
<td>略平行</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>#4 #4.3</td>
<td>6 3</td>
<td>平行</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>#6 #6.5</td>
<td>26 4</td>
<td>平行</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>#3.5 #4</td>
<td>58 60</td>
<td>略平行</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>#4 #5.5</td>
<td>27 1</td>
<td>平行</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>#4.5 #6</td>
<td>12 3</td>
<td>平行</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>#4 #4</td>
<td>3 8</td>
<td>不平行</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>#6 #6.5</td>
<td>3 1</td>
<td>平行</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>#5.7 #5.3</td>
<td>9 2</td>
<td>不平行</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>#3.5 #4.5</td>
<td>4 0</td>
<td>平行</td>
</tr>
</tbody>
</table>

同対象の9歳以上の被検児群はそれを認めていない喘息群であるから、閾値の変動程度が同じであるからといってその単なる outgrowing の結果であるということはできない。

今回レビニアスト長期投与により得られた吸入アセチルコリン閾値改善の程度は、数値としては僅かであるが有意であり、その効果は確かにあると思われ、その根拠は以下に述べることによって支持される。

著者は以前、気管支喘息患児の吸入アセチルコリン閾値の長期経年変化を観察したが、そして閾値というものは臨床症状改善に拘わらず平圧幅に変動するものではないが、僅かな変動でもそれを認めた場合、臨床的には大きな意義を有すると考えた。

すなわち、気道過敏性というものは、自律神経に根ざした体質的なものであり、それが単に幅に変動するという点には推察しがたいのである。

これらのことから、本試験により薬剤による気道過敏性の改善効果を観察し得たと考えて、差し支えないと思われた。

小児の気管支喘息患児の気道過敏性に対するレビニアストの効果については、渡部による報告があり、12週投与により30例中15例（50％）の症例に閾値改善がみられている、本試験では12例中8例（67％）で、若干上回る成績であった。発作の報告数は症例数、後児の背景が異なるので単純比較は難しいが、今回高い改善率が得られた理由は、薬剤の投与期間が1年間とより長かったためであると考えられる。

抗アレルギー薬は、喘息症状の改善を期待されて投与される一方、発作の予防薬として用いられることが多い、長期にわたり服用する予防薬は、喘息の基本的病態を形成する気道過敏性に対し、改善効果があるもののが望ましいと考えられており、気管支拡張薬は機序の異なる抗アレルギー薬をベースに使用する意義は大きいと思われた。

現時点で、抗アレルギー薬の気道過敏性に対する効果については、DSCG が種々の臨床的検討で確かめられている以外は評価が様々である。レビニアストについても未だ報告は多くないが、本剤が DSCG の構造活性相関によって開発された唯一の経口の薬剤であり、作用機序も DSCG に類似することから、気道過敏性に対しても同様な作用を発揮することが推測される。今回の症例についても今後の経過を引き続き観察し，
表7 出生時のOutgrowingを示した気管支喘息患児における吸入メサコリン閾値（標準液管番号で
表す）の経年推移と変異係数8

<table>
<thead>
<tr>
<th>患者番号</th>
<th>患者名</th>
<th>年齢（歳）</th>
<th>観察期間年</th>
<th>變動感作</th>
<th>1年目</th>
<th>2年目</th>
<th>3年目</th>
<th>4年目</th>
<th>5年目</th>
<th>6年目</th>
<th>7年目</th>
<th>8年目</th>
<th>平均</th>
<th>標準偏差</th>
<th>変異係数%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>12</td>
<td>3</td>
<td>+</td>
<td>2</td>
<td>2.7</td>
<td>2.8</td>
<td>2.51</td>
<td>0.44</td>
<td>16.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>12</td>
<td>7</td>
<td>+</td>
<td>3.7</td>
<td>4.3</td>
<td>4.2</td>
<td>4.41</td>
<td>0.50</td>
<td>11.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>11</td>
<td>7</td>
<td>+</td>
<td>1.7</td>
<td>2.7</td>
<td>2.6</td>
<td>2.2</td>
<td>3.5</td>
<td>2.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>11</td>
<td>7</td>
<td>+</td>
<td>2.5</td>
<td>2.5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3.14</td>
<td>0.62</td>
<td>19.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>14</td>
<td>5</td>
<td>+</td>
<td>2</td>
<td>2.3</td>
<td>4</td>
<td>3.5</td>
<td>2.97</td>
<td>0.97</td>
<td>32.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>11</td>
<td>8</td>
<td>+</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3.00</td>
<td>0.57</td>
<td>19.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>8</td>
<td>8</td>
<td>+</td>
<td>2.4</td>
<td>3.3</td>
<td>3.5</td>
<td>2.5</td>
<td>4</td>
<td>3.14</td>
<td>0.68</td>
<td>21.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>13</td>
<td>5</td>
<td>+</td>
<td>3.3</td>
<td>4</td>
<td>3.5</td>
<td>5</td>
<td>3.95</td>
<td>0.75</td>
<td>17.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>10</td>
<td>6</td>
<td>+</td>
<td>3</td>
<td>2.7</td>
<td>3.6</td>
<td>4</td>
<td>3.46</td>
<td>0.58</td>
<td>16.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>14</td>
<td>5</td>
<td>+</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3.80</td>
<td>0.83</td>
<td>21.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>13</td>
<td>6</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2.00</td>
<td>1.00</td>
<td>50.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平均</td>
<td></td>
<td>11.7</td>
<td>6.0</td>
<td></td>
<td>2.50</td>
<td>2.83</td>
<td>3.20</td>
<td>3.10</td>
<td>3.70</td>
<td>3.80</td>
<td>3.80</td>
<td>3.13</td>
<td>0.69</td>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td>標準偏差</td>
<td></td>
<td>1.7</td>
<td>1.5</td>
<td></td>
<td>0.78</td>
<td>0.93</td>
<td>0.65</td>
<td>0.65</td>
<td>0.77</td>
<td>1.03</td>
<td>0.83</td>
<td>0.83</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** ** ** ** *** **P<0.05 **P<0.02

改めて報告する予定である。
本研究の要旨は第41回日本アレルギー学会総会（平成3年10月）にて発表した。

文献
1）馬場実：小児気管支喘息, ライフサイエンス, 1985。
2）馬場実, 他：小児気管支喘息に対する抗アレルギー薬レピリナスト（MY-5116）細胞の臨床評価—トランスミットを対照とした多施設二重盲検比較試験—, 小児科臨床42,405,1989。
3）渡部 創, 他：気管支喘息児における気道過敏性に対するレピリナスト（ロメト）の長期投与効果について, 小児科学43,924,1990。
4）国府肇：P-Vリサージュを加味したアストグラフによる幼児の吸入メサコリン閾値測定法, 日本小児アレルギー学会誌 1, 75, 1987。
5）佐野靖之：抗アレルギー薬の位置と使用法, アレルギーの臨床 11, 24, 1991。
6）山田昇, 他：MY-5116および種々の薬剤のラット\n腹腔細胞からのmediator遊離抑制作用およびmedi-\nator拮抗作用, 日薬理誌 88, 229, 1986。
7）西澤芳男：MY-5116のアレルギー性鼻炎に対する\n効果の検討 1, 耳鼻臨床 補18, 1, 1987。
8）国府肇：小児における気道過敏性に関する研究—\n特に気管支喘息児, 気道過敏性喘息児および咳喘\n持続児における吸入メサコリン閾値を中心として,\n日本小児アレルギー学会誌 4, 72, 1990。
9）宮本昭正, 他：喘息治療の今昔, 喘息 3, 14, 1990。
10）Yamada, N, et al: Mechanism of action of MY\n-1250, a main metabolite of repirinast (MY-5116),\nin inhibiting histamine release from rat mast cells
EFFECT OF PROLONGED ORAL ADMINISTRATION OF REPIRINAST ON BRONCHIAL HYPERSENSITIVITY IN ASTHMATIC CHILDREN

Hajime Kokubu
*Kokubu pediatric clinic*

8 mg/kg/day of repirinast was administered orally on 12 asthmatic children for about 1 year and the respiratory threshold to acetylcholine was determined before and after the period of above medications. Measurement of the threshold was performed by using Astograph to which on a special device, P-V Lissajou method, was applied.

It was found that the improvement of bronchial hypersensitivity was obtained in 8 patients of 12 patients.

(Accepted: June 5, 1992)