High-Power, Double-Sided Drive Type Electrostatic Motor with Stacked-Film Structure

Akiyo YAMAMOTO, Takashi NISHIIJMA, Toshiro HIGUCHI and Akio INABA

This paper describes a high-power electrostatic film actuator that consists of double-sided drive type films. There have been several reports on electrostatic actuators that utilize stacks of electrode films. However, in those actuators, the electrode films can generate strong electric field only on the front faces of the films, and thus, thrust force can be generated only when front faces are opposed. In this paper, a new structure for the electrode film, in which strong electric field can be generated on both faces of the films is reported. It was verified with fabricated prototype films that a pair of new structure films can generate thrust force even when their back faces are opposed. A thin linear actuator with twenty-one films is fabricated, and its output power and efficiency are investigated. The actuator generated power over 3.5W when applied voltage was 1.4kVp. Maximum efficiency was measured to be 46%.

Key words: electrostatic force, electrostatic actuator, double-sided drive type, stacked-film structure, FPC film

1. 緒 言

現在、ロボット等のメカトロニクス機器に用いられるアクチュエータには、出力性能、制御性能、エネルギー変換効率、電源機器の実装面において総合的に他のアクチュエータと比べて優れた電磁モータが主に利用されている。しかし、一般的の電磁モータは、マグネットや強磁性体を多用するために質量が大きく、また、高速低トルク駆動であるために減速器を必要とする。そのため、機器の軽量化やアクチュエータへの過负荷による減速器の故障回避のためには筋肉のように軽量・高出力、ダイレクトドライブが可能なアクチュエータの開発が望まれる。

このような軽量・高出力なアクチュエータへのニーズに対し、様々な原理に基づくアクチュエータの研究がなされており、その中の一つとして、静電気力を駆動とする静電モータが挙げられる。

電磁モータが磁力を得るために、立体的構造を持つコイルを必要とするのに対し、静電モータは平面状の電極のみで静電気力を得ることが可能であるため、フィルム状の薄型な構造とすることが可能である。一般に、静電気は電磁力に比べて微弱であるとされるが、上記の特徴を利用してモータを十分に軽い構造とすることで、単位面積で単位質量あたりの性能では、電磁モータにも劣らない高性能な静電アクチュエータが実現できる。これまでに、そのような高出力静電アクチュエータとして、様々な種類の静電モータが提案されている。中でも微細電極群を有するFPC(Flexible Printed Circuit)フィルムを移動子・固定子として用いる交流駆動可変電極リニアモータは、推力密度630N/kg、出力密度230W/kgなどの高い出力性能を実現している。このアクチュエータでは、薄型の移動子・固定子フィルムを複数組積層することによって容易に推力を増加させることができるため、50組の積層により、最大推力310Nを達成した例も報告されている7)。さらに、本モータのサーボ制御による倒立振子の安定化制御8)、高精度な位置決め制御9)などを報告されており、優れた制御性能も確認されている。また、フィルムの柔軟な構造を活かして、モータの形状を変化させても駆動することができることが確認されており10)、ロボット用筋肉としての利用も期待されている。

本研究では、フィルムを複数組積層する薄型静電モータにおいて、その推力を増大させることを目的として、新たなフィルム構造を提案する。従来研究で用いられてきた移動子・固定子フィルムは、それぞれの表面同士を対向させた場合のみに推力を得ることが可能であり、裏面同士を対向させた場合や、裏面と表面を対向させた場合には推力を得ることができなかった。一方、フィルムの表面、裏面の組み合わせを問わずに、どのような組み合わせにおいても推力を得ることができれば、同じ積層枚数の薄型静電モータにおいて、従来の約2倍の推力を期待できる。

本論では、新たに設計したFPCフィルムの構造について述べ、それを用いた静電モータの性能評価を行い、従来方式のフィルムを用いた場合との性能比較を行う。また、これを利用した薄型リニアアクチュエータを試作・評価した結果について報告する。

2. 交流駆動可変電極リニアモータ

2.1 基本構成

交流駆動可変電極リニアモータ（以下、静電モータ）は、三相の寄生電極を内部に有する薄型の移動子・固定子フィルムで構成される。Fig.1は基本構造を示している。3-phase parallel electrodes stator

Driving Direction

slider

Fig.1 Basic configuration of the electrostatic actuator

精密工学会誌 Vol.71, No.10, 2005 1245
成される。基本構成を図1に示す。従来研究において、フィルムサイズは一辺が数〜十センチメートルであり、三相電極の電極板、電極ピッチは均一で、それぞれ100μm、200μm程度である。厚さは200μm程度である。多くの場合、フィルムはFPCフィルムであり、材料はペースフィルムがポリイミド、電極は銅である。移動子・固定子フィルム間には、駆動時に発生するフィルム同士の摩擦減衰、及び適切なギャップ維持のために直径20μmのガラスピースまたはプラスチックビーズを散布している。また、駆動のために高電圧を印加した際、フィルム周辺に発生する高電圧によって空気が絶縁破壊することを防ぐために、フィルムを絶縁漆（フロリナイトFC-773M製またはシリコンオイル）に浸した状態で駆動する。

2.2 駆動原理
静電モータは三相交流電圧で駆動する。図2の移動子・固定子フィルムの線路板図は静電モーターへの電圧印加方法を示す。移動子・固定子フィルムの三相帯状電極に対し、絶縁順序が互いに逆順となるように三相交流電圧を印加することにより、四フィルム内には図2中太線で示されるような進行電圧が安定する絶縁順序が逆向きに逆向きに3倍の速度で進行する。ここにpは電極ピッチ、fは印加電圧周波数である。これに二つの電磁体の間には、両者の空間的な差が応じた静電磁気力が発生し、常に安定した状態が保たれるよう移動子が駆動される。すなわち、同期状態においては、二つの電磁体の相対速度がゼロとなるように移動子が必要であるが、移動子速度vは電磁体の移動速度の2倍となり、その速度vは、μgmに表される。

3. 両面駆動形積層静電モータ
3.1 従来のフィルムの問題点
静電モータの推力を、移動子・移動子電極の対向面積（直流駆動面積と定義する）に比例して増加する。そのため、図3のように移動子・固定子フィルムを複数組積層することによって、推力を増大することが可能である。

図4に、従来研究において用いられてきたフィルムの電極配置の一例を示す。FPC基板上の帯状電極を三相毎に結線するには、必ず配線の立体交差が必要であるため、FPC基板は高さ方向に2層の電極基板を用いている。駆動に寄与する電極部分は全て表面に配置されているが、それら電極間に広く導線回路は、二相が表面、残り一相はスクリーニングを介して裏面電極に配置されている。

図5、図6におけるA-A断面及びB-B断面を示す。また、フィルム表面、裏面を、図5に示すように定義する。表面と裏面は、電極は、帯状鋼板をベースフィルムにエポキシ系の接着剤を用いて接着し、エッティングによりパターン形状したものであり、さらに上からポリイミドのカバーフィルムをエポキシ系の接着剤で接着し、表面と絶縁している。表面電極として、駆動用の三相電極と、二相の集合線が形成されている。裏面電極は、残る一相の集合線であり、表面電極とスクリーニングを介して絶縁されている。この断面構造において、駆動用電極は表面に配置されているため、駆動用電極からフィルム外部までの距離は、裏面においては表面の数倍の距離となる。つまり、従来型フィルムでは、駆動用電極に電圧を印加した場合に、フィルム裏面においては、駆動に有効な電界を発生させることが難しい、表面同士を圧縮させない限り、推力を発生することができない。したがって、フィルムをn枚（移動子・固定子をあわせて2n枚）積層した場合に、フィルム同士が向き合う箇所（表裏を問わなくても）2n箇所ほとんどなくなく、非積層時の1/2n倍であると考える。実際、過去に試作された積層モータでは、移動子・固定子を各5枚交互に積層したものが報告されている。その場合においても、積層モータの推力は非積層時の30倍となっている。

これに対し、本研究では、フィルム裏面においても表面同様の高い電界が発生できるような電極構造を提案する。これにより、フィルムの裏面を問わず駆動力を発生することが可能となるため、
3.2 両面駆動形フィルムの設計

図7は両面駆動形フィルムの厚さ方向の断面図を示す。試作した両面駆動形フィルムは図7に示すように、ベースフィルムを従来の1/2厚さとしたところ、裏面のカーバフィルムは集合線のみを部分的にカバーする構造になっている。したがって、フィルム両面のスルーホール部分を除き、電極からフィルム外部までの距離を、裏面ではほぼ等しくなる。そのため、裏面と表面を対向させても、裏面側を対向させても推力が発生する。

図8に、実際に試作したフィルムの写真を示す。サイズは固定した。移動子、移動子ずれが20mm×160mm、32mm×100mm、1組の移動子、固定子による駆動面積は96mm×14mm。厚さは約100μm（スルーホールの無い部分）である。

今回の試作においては、両面での駆動を可能にすることに加え、電極ピッチを従来値に用いられてきた200μmから160μmへと微細化した。設定では現行のFPCフィルム製造技術において安定して乗算可能な範囲で（スルーホール径の大きさの制約）最小限の電極ピッチとし、固定子・移動子とも電極幅を6μm、電極ピッチを160μmとした。

静電気力は、電極ピッチの細分化によって増加させることができるが、フィルム構造全体の寸法比率を保たなければ寸法が減少したと仮定すると、電極Eは印加電圧Vに比例し、電極代表寸法Lに反比例する。また、静電気力Fは電極Eの二乗に比例する。電極代表寸法を電極ピッチの2/3にすることにより、今度の電極ピッチは、従来フィルムの200μmと比較して0.8倍であるため、同一印加電圧時の静電気力Fは1.56倍であると計算できる。ただし、この計算は、フィルム構造全体の寸法比率が保たれているという仮定のもとの計算であるため、実際にには、この計算で得られる値よりも、得られる力は少なくなると考えられる。

3.3 フィルム単体の推力測定

試作した両面駆動形フィルムを用いた静電アクチュエータの推力を測定した。このフィルムでは、図7に示したように、電極からフィルム外部までの距離は、裏面ではほぼ等しいが、表面では同じに、ピッチが高められたために、裏面と表面の距離は等しくなるため、裏面と表面の距離は等しくなる。結果値を裏面-表面と表面-裏面の組み合わせでそれぞれ観察し、実験では1組の移動子・固定子を用い、それぞれの組み合わせで得た駆動面における推力を測定した。比較のために200μmピッチのフィルムの推力を測定した。図9に推力測定を行った実験装置の模式図を示す。固定子フィルムは、その一部をカセンサLTS-2KA（共集電流雑音）で設定した。移動子フィルムはリニアガイド上のテーブルに固定し、テーブルはねを介して定盤に固定した。アクチュエータの推力を移動子を一定速度で駆動し、推力がばねの復元力に等しかったときに出されるカセンサの出力とした。移動子の移動速度は100mm/s（駆動電圧の周波数f=10.47Hz）、駆動電圧は600V～1600Vを用い、結果は図10に示す。

結果から、表面-表面で構成される駆動面では200μmのフィルムに比べて、推力は印加電圧Eに比例し約1.4倍となり、電極ピッチの微細化による効果が確認され、単位駆動面積あたり0.17N/cm²の推力を得られる。裏面を用いた場合には、推力が大きいが、これは裏面に集合線のカーバフィルムによる凹凸があるため、駆動に寄与する電極面積が減少しているためであると考えられる。

4. 両面駆動形フィルムを用いた積層静電アクチュエータ

4.1 構造

両面駆動形フィルムを用いて駆動方式の積層静電アクチュエータを試作した。試作アクチュエータの構造図を図11に示す。サイズは180mm×55mm×10mm、最大ストロークは50mmである。全重量は約145gであり、内蔵を表1に示す。スタッドはアクリル樹脂を基にしたライオンアイグレードLWL3（日本トウモロク製）に用いた。固定子フィルムは10枚、移動子フィルムは11枚であり、駆動面は全て平面となる。そのうち表面-表面による駆動面が10面、裏面-裏面による駆動面が10面ととなり、表面-裏面の駆動面が10面ととなり、裏面-裏面の駆動面が10面となる。この状態を導電性ゴムをフィルムのラミネートに挟み、ねじで押し付けることによって行った。

絶縁抵抗として絶縁抵抗は10Ω、特性試験を1000Vで試験を行った。フィルム間の絶縁抵抗はリング状の導電性ゴムをフィルムのラミネートに挟み、ねじで押し付けることによって行った。
4.2 出力・効率の測定
積層アクチュエータの出力・効率の測定実験を行った。実験では印加電圧と移動子速度をパラメータとした。印加電圧の範囲は各相の相電圧で800～1400Vp。移動子速度は高速にすると脱調したため、移動子の動きが不安定とならない範囲で行い10～200mm/sとした。対応する印加電圧周波数は10.4Hz～206.3Hzである。推力を最大近似しうる可能な組みの質量に推力加速度を乗じて求める。

効率はアクチュエータに供給される電力と出力の比であるため、それぞれを求める。アクチュエータに供給される電力はアクチュエータへの供給電気の相電圧と線電流を高電圧プローブ（P3000 Tektronix 製）と電流プローブ（TCP202 Tektronix 製）を用いてデジタルオシロスコープ（TDS3034B Tektronix 製）によって計測し、電流と電圧の積を積分することによって交流電力をまとめた。出力は推力加速度と推力の積から算出した。

図12に印加電圧1200Vp。移動子速度100mm/s時の電圧と電流の波形を示す。電流は電圧に比べて相対的に90度進んでおり、容量負荷であることが確認できる。図13に各移動子速度における出力と効率の関係を示す。図13では、高効率で駆動するための最適な駆動速度があることが確認され、印加電圧が高いほど高速運転側にシフトする。1400Vp時には3.5Wの出力を発揮し、そのときの出力密度は23W/kgとなった。効率は最大で約46%になった。本アクチュエータは積層数が10層であり、出力を発生するフィルムの質量が全体の10%程度とわずかなため、さらに積層数を増し、全体質量を占めるフィルム質量の割合を増やすことで出力密度を増加させることが可能である。なお、フィルムのみの質量をアクチュエータの本質的な質量とみなし、これに対して出力-質量比を計算すると25W/kgとなる。

4.3 考察
アクチュエータの効率を改善するためには、損失の原因把握とその対策を考察する必要がある。アクチュエータの損失は、アクチュエータの等価直列抵抗による電気的損失、フィルム間に発生している絶縁破の流体粘性抵抗による損失。及びリニアガイドやフィルム間の摩耗等の機械的摩擦による損失の和とみなせる。次にこれらの大きさについて考察する。
4.3.1 電気抵抗による損失
アクチュエータの三相回路を図14のようにモデル化する。三相の各相間のインピーダンスZをZ=R+jωLとする。電気抵抗による損失L_sは次式で表される。\[L_s=3L_d^2R_g \] (1)
ここで、L_dは三相の各インピーダンスに流れる電流の実効値であり、L_s=|Z|=|R|+|L|の関係がある。また、R_dは三相の各インピーダンスの等価直列抵抗である。今、R_dを求めるために、モータ端子の一相を開放した状態で残る二相間の等価直列抵抗Rを測定し算出した。ここにRとR_dは次の関係がある。

\[R=\frac{2}{3}R_d \] (2)
また、L_dを求めるために、線電流の実効値Iを測定し算出した。ここにIとL_dには次式の関係がある。

\[I=\sqrt{3}I_s \] (3)

相間の等価直列抵抗RはLCMメータ（ZM2355 エネフ回路設計プロック）を用いて測定したところ、印加電圧周波数40～200Hzの範囲（移動子速度が数十～数百mm/sで駆動する周波数）で15kΩ～2.6kΩの値をとり、周波数の増加にしたがい減少する傾向が認められた。これに対して、静電モータには静電容量に対
して並列に存在する抵抗成分と直列の成分があるが、ここで
は、それらを全て等価的な直列抵抗値へ換算している。上記の
等価直列抵抗の変動は、並列抵抗成分の直列抵抗への換算に
伴うかかり上の変数であり、実際の損失が変動することを必ず
しも意味していない。測定した等価直列抵抗値と各移動子速度
（各周波数）で最大推力を発生しているときの線電流Iを測定し、
電気抵抗による損失を求めた。各周波数における等価直列抵抗
の値のうち、LCZ メータの計測可能な周波数分解能、測定で
きない周波数においては、測定可能の周波数での測定値から補
間して求めた。

この損失を線電流の実効値の二乗に比例して増加する。電流
実効値はアクチュエータが容許負荷であることから、駆動電圧
の周波数に比例して増加する。また、駆動電圧の周波数は移動
子速度に比例するため、等価直列抵抗が周波数の増加にしたが
い減少する傾向にあるものの、この損失は移動子速度に大きく
依存する。

4.3.2 フィールム間の液体粘性抵抗による損失
フィールム間の絶縁液は誘電体であるから、液体に静電気
力が働くと考えられるが41）、ここでは液体に働く静電気力の影
響はなく、絶縁液（フロリトレートFC7）の流しの状態が層流で
あると仮定すると、ニュートンの粘性法則から損失 \(W_c \) は以下
で求められる。

\[
W_c = \rho \nu \frac{u^2}{h} A
\]

ここで \(\rho \) は絶縁液の密度、\(\nu \) は絶縁液の動粘度、\(u \) は移動子速度、\(h \) はフィールム間の間隔長、\(A \) は移動子・固定子フィールム
の全面積を表すである、絶縁液の物性値より、\(\rho = 1.87 \text{ kg/m}^3, \nu = 0.8 \times 10^{-6} \text{ m}^2/\text{s} \) （25°C）であり、フィールム間の間隔 \(h \) がガラスビー
ズ直径の20μmに保たれ、フィールムの全面積は0.002m×20
面、移動速度が100mm/s とすると、損失はおよそ28mW と見積
もることができ、非常に小さい。

4.3.3 機械摩擦損失による損失
この損失は、リニアガイド等の摩擦がフィールム間の摩擦によ
るものである。これらの抵抗を見積るとの困難なので、今回は
は全体から電気抵抗及び流体粘性抵抗による2つの損失分を
差し引いた値とみなした。

以上をまとめ、駆動電圧1200Vpにて、全供給電力の消費
の割合を求めた。結果を図15に示す。損失の約70%が機
械的な摩擦による損失である（移動子速度200mm/s）。
フィールム間の摩擦損失が重要である。

5. 結 言

本研究では、移動子・固定子フィールムを積層した静電モータ
において、各フィールムの面面で推力を発生可能な新しいフィール
ム構造を提案し、その作製・評価を行った。推力測定の結果か
ら以下の結果を得た。

（1）フィールムの両面に並列に推力を生成することが可能であ
ることを確認した。

（2）電極ピッチの微細化によって単位面積あたりに生成する
推力が増加することが確認した。試作した電極ピッチ
160μmのフィールムは24V駆動電圧で0.16Nを発生し、印加電圧
0.07N/mmの推力を発生した。これは電極ピッチ200μm
のフィールムに比べて約1.4倍の推力密度となった。

また、試作したフィールムを用いて薄型のリニアアクチュエー
タ（10段積層形）を試作し、アクチュエータの出力と効率を測
定し、以下の二つの知見を得た。

（3）駆動電圧1400Vpにて出力約3.5Wを得た。このときの
出力/アクチュエータ質量比は23W/kg、アクチュエータ
質量をフィールムのみとすると250W/kgを得た。効率は最
大約46%を得た。

（4）アクチュエータの損失のうち、等価直列抵抗による損失
は移動子速度に大きく依存する。また、全損失の約70%
が機械的摩擦、フィールム間の摩擦による考えられる。

参考文献
1) 黒澤善: 弾性表面波モータ、日本ロボット学会誌21(7,2003)375。
2) M.Schieb,R.P.Fleischer: A Compact Actuator based on Shape Memory
CD-ROM 3H3 6.
4) 柳川昌、新野武明、伊藤利行: バルス駆動型誘導電荷型静電フィールム
アクチュエータ、日本ロボット学会誌, 15,3 (1997) 373。
5) 新野武明、常口達也、柳川昌等交流駆動型電極形静電モータ、日本ロ
ボット学会誌, 15, 1 (1997) 97。
6) Toshiaki Nii, Saku Egawa, Hiromi Kimura, and Toshiro Hijiguchi: Elec
trostatic Artificial Muscle:Compact, High-Power Linear Actuators with
7) M. Yamaguchi, S. Kawamura, K. Minami, and M. Esashi, Distributed Elec
8) S. M. Bobbio, M. D. Kellam, B. W. Dudley, S.H-Johnsson, S. K. Jones, J.
9) Akiko Yamamoto, Tohshi Nii, and Toshiro Hijiguchi: Servo Control of
10) 山中晃明、新野武明、柳川昌等高出力静電アクチュエータを用いた高
精度位置決め制御、精密機械学会, 64(9)1838。
11) 篠浦隆、山中晃明、新野武明、福部昭夫: 柔軟な構造を有する静電
フィールムアクチュエータの開発-推力特性評価1-、精密学会誌, 69,3(2003) 443。
12) Toshiaki Nii, Toshiro Hijiguchi, and Saku Egawa: Dual Excitation Multi
phase Electrostatic Drive, Conf. Record of 1995 IEEE IAS annual
meeting (1995) 1188。
13) 柳川昌、藤原正宏、柳川昌、介護機器用静電アクチュエータの基
礎検討、日本ロボット学会誌, 15,8(1997) 1147。
14) 西澤隆、山中晃明、柳川昌、藤原正宏: シリコンオイルを使用して
用いた静電フィールムアクチュエータの特性評価。2003年度精密
学会春季大会学術講演会講演論文集(2003)582。