研究論文

プラズマ対向材料中のトリチウム透過の解析的な一般式

舒 南 氏
（日本原子力研究所）

General Formula of Tritium Permeation through Plasma Facing Materials

SHU Weimin
Japan Atomic Energy Research Institute, Ibaraki 311-0193, Japan
(Received 24 October 1998/Accepted 2 December 1998)

Abstract

General formulas for gas-driven permeation, plasma-driven permeation and simultaneous gas- and plasma-driven permeation have been derived by a circuit analogy, in which permeation resistance and permeation potential are newly defined for both diffusion in the bulk and recombination on the surface and the gradient of permeation potential against permeation resistance is considered to be the general driving force for tritium permeation through a laminate. The formula is applied to the assessment of tritium permeation and inventory in ITER divertor.

Keywords:
tritium, permeation, diffusion, recombination, plasma facing material

1. 序論

プラズマ対向材料中におけるトリチウムの透過は、核融合の安全評価において重要な要素であり、プラズマ対向材料の選択において安全対策の一つである。トリチウム（水素同位体）透過に関する研究は無観と理論的に多くの研究が行われている[1-22]。

プラズマ対向材料中における水素同位体の透過はその駆動方式により、ガス駆動透過とプラズマ駆動透過に分類される[2,3,11]。ガス駆動透過は上流側真空チャンバー下流側真空チャンバーの水素同位体圧力の差をもとにされるものである。一方、プラズマ駆動透過には、水素同位体イオンを材料中に飛行または注入するもの（イオン駆動透過もしくはイオン注人透過とも呼ぶ）と解離原子あるいは中性原子の水素同位体が材料表面のポテンシャル障壁を超えるもの（飛行がせ

author's e-mail: shu@bl tokai.jaeri.go.jp

409
ることによって導出したガス駆動透過およびプラズマ駆
動透過ならびにガス・プラズマ共存系の透過に対する解
析的な一般式について述べる。

2. 定義

透過に対する拡散と再結合の寄与を数学的に統合す
るために、まず拡散と再結合に対してそれぞれ透過抵抗と
透過ポテンシャルという新しいパラメータを定義する。

定常状態での多層構造 \(j = 1,2,\ldots \) 材料中の拡散に
おいては、各層を通っている水素原子体の拡散フラクス
(流れ) が前後界面における透過ポテンシャルの差 (勾
配) により拡散抵抗体を流れているという考えに基づき、
第 \(j \) 層の拡散による透過抵抗 \(\rho_s \) およびその前後界面に
おける透過ポテンシャル \(\mu_H \) と \(\mu_B \) を以下の式のよ
うに定義する[20]。

\[
\rho_s = \frac{1}{S_j \sqrt{\phi_j}}. \tag{4}
\]

\[
\rho_B = \frac{1}{S_B \sqrt{\phi_B}}. \tag{5}
\]

\[
\mu_H = \frac{C_H}{S_j}. \tag{6}
\]

\[
\mu_B = \frac{C_B}{S_B}. \tag{7}
\]

\[
\mu_{H-V} = \sqrt{\rho_H}. \tag{8}
\]

\[
\mu_{B-V} = \sqrt{\rho_B}. \tag{9}
\]

ここで、\(\rho \) は再結合係数、\(\phi \) は抵抗体を流れている再放
出フラックスまたは通過フラックス、\(E \) は水素原子体の
圧力、下付きの \(H \) または \(B \) は入射側（表側）と裏側を表している。

再結合のフラックス（流れ）は濃度の二乗に比例して
いるため、再結合抵抗は拡散抵抗と異なって、流れにも
依存する。水素原子体密度の項は、このような定義によ
り、透過抵抗の式に直接含まれず、また透過ポテンシ
ャルの式には含まれているものの、全体のポテンシャル
の勾配を整理することによってこの濃度の項を消すこ
とができる。

3. 一般式

透過抵抗に対する透過ポテンシャルの勾配を透過の駆
動力とすることによって、定常状態でのガス駆動による
透過とプラズマ駆動による透過およびガス・プラズマ共
存系における透過に対しそれぞれ律連過程に沿った一
般式を導出する。これによって任意の多層構造材料にお
けるトリチウム透過量の評価を可能にする。

3.1 ガス駆動透過一般式

定常状態でのガス駆動透過については材料中での流れ
（透過フラックス）は一定であるため、Fig. 1 に示すよ
うに、入射側の再結合抵抗 \(\rho_R \) とバルクの拡散抵抗 \(\rho_H \) およ
び裏側の再結合抵抗 \(\rho_B \) の直接回路になる。下流側直
径チャンバーの水素原子体の圧力が無視できるほど小さい
場合では、その透過フラックスは、全体の透過ポテンシ
ャルの勾配と透過抵抗の比に等しく、次のように表される。

\[
\rho_{B-V} = \frac{\partial \phi}{\rho} = \frac{\rho_{H-V} - \mu_{B-V} \phi}{\rho_R + \phi_B + \rho_B} = \frac{\sqrt{\rho_H}}{\phi_B + \beta' \sqrt{\phi_B}}. \tag{10}
\]
ここで、\(\beta = \beta_0 + \beta_1 \)、\(\delta = \delta_0 + \delta_1 \)
は両方とも材料の物性定数と実験条件のパラメータである。よって、ガス駆動による水素同位体透過の解析的な一般式が以下のように得られる [20]。

\[
\Phi = \frac{4P}{(\beta + \sqrt{\alpha^2 + 4\delta \sqrt{P}})}.
\]

この式を用いれば、材料の物性定数（拡散係数、溶解度係数、材料の表面状態に依存する再結合係数）と実験条件（圧力、温度、試料の厚み）のパラメータを与えることによって、任意条件下でのトリチウム透過量を解析的に算出することが可能である。

この一般式より、圧力の十分大きい場合と小さい場合での透過量の近似式が導出される。すなわち、\(P \gg \beta / \alpha \)（拡散律速）の場合には \(\Phi \approx \Phi_0 = P / \alpha \) となり、\(P < \beta / \alpha \)（再結合律速）の場合は \(\Phi \approx P / \beta \) と簡略化される。このように、従来の個別の律速過程の式 [4, 11] を再現することができる。

実験データと計算値の比較を Fig. 2 に示す。実験値は Waelbroeck らにより測定されたものであり、試料は純鉄、厚みは \(10^{-4} \) m、温度は \(410 \) K である [4]。計算においては、文献より、拡散係数 \((8 \times 10^{-7} \text{ m}^2 / \text{s}) \)、溶解度係数 \((2 \times 10^{-20} \text{ atoms/m}^3 / \text{Pa}^{0.5}) \)、再結合係数 \((7.5 \times 10^{-25} \text{ m}^3 / \text{s/atoms}) \) を用いた [20]。Fig. 2 に示すように、一般式から求めた計算値は実験データによく一致し、またその 2 本の近似線はそれぞれ拡散律速と再結合律速の解析式に相当する。

3.2 プラズマ駆動透過的一般式

プラズマ駆動透過の場合には、入射フラックス \(\Phi_i \)（本文において入射フラックスは反射を除いたものを指す）は飛行で入射領域の再結合フラックス \(\Phi_b \) と裏側の透過フラックス \(\Phi_o \) に分して真空に流出する。

透過面の考え方では、飛行における透過ポテンシャル（\(\mu \)）と真空 - 材料境界（入射側）または材料 - 真空境界（裏側）での透過ポテンシャル（\(\mu_i = \mu_M = 0 \)）との差（勾配）により、再結合フラックスと透過フラックスがそれぞれ入射側の透過抵抗体と裏側の透過抵抗体を流れるため、Fig. 3 に示すように、プラズマ駆動透過は入射側の透過抵抗（飛行の拡散抵抗 \(\delta \) と入射側の再結合抵抗 \(\rho \) の直列）と裏側の透過抵抗（バルクの拡散抵抗 \(\delta_b \) と裏側の再結合抵抗 \(\rho_b \) の直列）の並列回路として整理される。

一般的に、入射した水素同位体はほとんど入射側の真空チャンバーに再放出されるので、再放出フラックスは入射フラックスに近似できる \(\Phi \approx \Phi_i \)。言い換えれば、入射側の透過抵抗は裏側のそれよりずっと小さい。よって、次の式が成立つ。

\[
\Phi_b (\delta + \rho) = \Phi_i (\delta + \rho)
\]

ここで、\(\delta = \frac{r}{D \delta} \)、\(r \) は入射飛程である。12式により（4）と（5）式を代入して \(\Phi_b \) を解くと、プラズマ駆動による水素同位体透過の解析的な一般式が次のように得られる [20]。
プラズマ・核融合学会誌第75巻第4号1999年4月

\[\phi_0 = \frac{4(\beta_0 + \beta_0 \sqrt{\alpha})^2}{(\beta_0 + \sqrt{\alpha})^2 + 4(\beta_0 \beta_0 + \beta_0 \sqrt{\alpha})^2}. \] (13)

したがって、ガス強制通過と同じく、プラズマ駆動通
過についても、材料の物性定数（拡散係数、溶解度係数、
材料の表面状態に依存する再結合係数）と実験条件（入
射フラックス、入射飛程、温度、試料の厚さ）のパラメー
タを与えることによって、任意条件下でのトリチウム通
過量を解析的に計算することができる。

入射側と裏側において、それぞれ拡散抵抗と再結合合
抗の比較をすることにより、次に示すように従来の4つ
の律速過程[3,10]を識別することができます。言い換えられ
ば、この透過回路の考え方は個別の律速過程による物的
な意味を与えるものである。

①再結合 - 再結合律速（RR）入射側で再結合抵抗が
拡散抵抗よりずっと大きいため再結合律速になり、
裏側においても再結合抵抗が拡散抵抗よりずっと大
きいため再結合律速となる。すなわち、\(\phi_0 \gg \beta_0 \)
②再結合 - 拡散律速（RD） \(\phi_0 \gg \beta_0 \)かつ \(\phi_0 \gg \beta_0 \)
③拡散 - 拡散律速（DD） \(\phi_0 \approx \beta_0 \)かつ
④拡散 - 再結合律速（DR） \(\phi_0 \approx \beta_0 \)かつ
また、一般式[13]から上記の条件を考慮して導いた個
別律速過程における透過の式を Table 1 に示す。単層材
料（\(\alpha = 1 \)かつ \(\Phi = \Phi_0 \）という条件の下で、Table 1 にお
ける透過の式から従来の個別律速過程の式[10,11]を完
全に再構することができる。

さらに以下のように定義した2つの無次元のパラメー
タを用いても律速過程を識別することができる[20]。

\[U = \frac{\phi_0 \sqrt{\phi_0}}{\beta_0}, \] (14)

\[V = \frac{\beta_0^2}{\alpha_0 \beta_0 \sqrt{\alpha_0}}. \] (15)

ここで、輸送パラメター \(U = \alpha_0/\rho_0 \)は入射側における律
速過程を評価するパラメターである。一方、輸送パラメター

<table>
<thead>
<tr>
<th>Regime</th>
<th>RR</th>
<th>RD</th>
<th>DD</th>
<th>DR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_0)</td>
<td>(\beta_0^2/\alpha_0)</td>
<td>(\beta_0 \sqrt{\alpha_0})</td>
<td>(\alpha_0 \beta_0)</td>
<td>(\beta_0^2 \alpha_0^2)</td>
</tr>
</tbody>
</table>

Table 1 Permeation flux in four regimes of plasma-driven permeation of tritium through a laminate.

Fig. 4 Four specific regimes of plasma-driven permeation distinguished by dimensionless parameters \(U \) and \(V \).
メータをガス駆動透過とプラズマ駆動透過に対してそれぞれ以下の式で定義する [21].

\[e_0 = \sqrt{p} \] \hspace{1cm} (16)
\[e_p = \beta_0 \sqrt{e_p} \] \hspace{1cm} (17)

共存系における透過の解析的な一般式は、透過回路の考え方で同様に次のように導かれる [21].

\[\Phi = \frac{4(\sqrt{T}+\Delta \Phi+\beta \sqrt{T})^2}{[\beta_0+\Delta \Phi^2+4\Delta \Phi(\sqrt{T}+\Delta \Phi)]^2} \] \hspace{1cm} (18)

この定常状態での解析的な一般式から、任意の材料物性定数および実験条件を与えることによって、ガス・プラズマ共存系におけるトリチウム透過量の評価が可能である。また、ガス透過ソースがプラズマ透过ソースよりもずっと大きい場合（\(e_0 \gg e_p \)）では共存系の一般式（18）がガス透過的一般式（11）になり、プラズマ透過ソースがガス透過ソースよりもずっと大きい（\(e_p \gg e_0 \)）場合においては共存系の一般式（18）がプラズマ透過的一般式（13）に簡略化される。

実験データと計算値の比較を Fig. 5 に示す。実験値は Doyle と Brice により測定されたものである。試料は 316 ステンレス鋼、厚みは 4 × 10^{-4} m、導電率は 4 × 10^{-8} m、圧力は 2.8 Pa、入射フラックスは 3.1 × 10^{10} atoms/m^2/s である [8]。計算をするにあたり、文献より、拡散係数と溶解度係数 [24]、再結合係数 [8] を引用した。Fig. 5 で見るように、一般式は実験データよく一致し、またその 2 本の縦近線はそれぞれガス駆動透過の一般式とプ

4. トリチウム透過量および滞留量の評価

ITER ダイバータにおけるトリチウムの定常透過の様式図を Fig. 6 に示す。飛来をゼロ点とする透過拡散に対し、透過プロフィルのプロファイルは 2 本の直線になる。この透過回路よりトリチウム透過量 (atoms/m^2/s) と周溶による滞留量 (g) の評価式を以下のように導出する[22]。

\[\Phi = \frac{4(\Delta \Phi - 1) S_1 - 1 \Phi + 1 + \Phi - 1 \Phi - 1 \Phi - 1}{S_1 \Phi + 1 + \Phi - 1 \Phi - 1 \Phi - 1 \Phi - 1 \Phi - 1} \] \hspace{1cm} (19)

\[I = \frac{MAL S_1 \Phi}{N_A} \left(\frac{L_1}{2D_S S_1} + \frac{L_2}{2D_S S_2} \right) + \frac{MAL S_1 \Phi}{N_A} \left(\frac{L_2}{2D_S S_2} + \frac{1}{S_2 \Phi} \right) \] \hspace{1cm} (20)

ここで、下付きの 1 と 2 はそれぞれペリリウム (Be) あるいはタンゲストン (W) 層と鋼 (Cu) 層を意味し、横層の温度勾配を考慮して平均した拡散係数と溶解度係数を用いた。また、M はトリチウム質量、A は面積、N_A はアボガドロ定数である。

ダイバータの各パラメータに対して、ITER 設計値（外部条件と物性定数）[18] を用い、式 (19) と (20) によるトリチウム透過量と滞留量の評価を行った。ダイバータ全体として Be/Cu 接合材のトリチウム透過量と周溶による滞留量は W/Cu 接合材のそれぞれ約 100 倍と 900 倍と評価された[22]。

垂直ターゲットの上部とウィングの上部について、W/Cu 接合材を用いる場合の損耗による影響を Fig. 7 に示す。計算にあたっての入力データは、入射フラックスは 10^{23} atoms/m^2/s、入射エネルギーは 10 eV、面積は 185 m^2、厚みは 10^{-2} m (W)/5 × 10^{-2} m (Cu)、温度は 533 K (プラズマ側)/443 K (冷却側)、損耗率は 10^{-10} m/s である[18]。Fig. 7 に示すように W/Cu 接合材の
適合したプランスーの喫口として、この通過回路の考え方により、通過に対する拡散と再結合の寄与を数学的に総合して、定常状態での多層構造材料中のトリチウムガス誘動通過とプランズー駆動通過およびガス・プランズー共存系の通過に対する解析的な一般式をそれぞれ導出した。これらの一様式は実験結果により一致し、また従来の個別の律連過程に物理的な意味を与え、それぞれの通過の式を完全に再現することことができ、導出した一般式を用いれば、任意の物性定数（拡散係数、溶解度係数、材料の表面状態にも依存する再結合係数）と外部条件（圧力、入射フラックス、入射エネルギー、温度、厚み等）を与えることにより、律連過程を識別しないで、直接、解析的にトリチウム通過量を計算することができる。この一般式の導出により、ITERハイバードのような温達収縮と損耗のある多層構造材料中のトリチウム通過量および溶浴による滞留量の評価が可能になった。

謝辞
本研究を行った過程において貴重なご助言をくださった林安徳教授（九州大学大学院工学研究科）、奥野健二教授（静岡大学理学部）、渡辺昭教授（富山大学水素同位体機能研究センター）ならびに本誌をまとめた者にあたって様々なご助言を下さった西正生教授と大平茂副研究員（日本原子力研究所核融合工学部）に感謝いたします。

参考文献