Global full-wave simulation on electromagnetic wave propagation in toroidal plasma with an external magnetic field imaging a tokamak configuration is performed in two dimensions. The temporal behavior of an electromagnetic wave launched into plasma from a wave-guiding region is obtained.

Keywords: electromagnetic wave, microwave, millimeter-wave, toroidal plasma, plasma diagnostics

Electromagnetic wave propagation in a plasma is one of the basic problems in plasma physics. The wave trajectory in the microwave and millimeter-wave regimes is very important from the viewpoint of electromagnetic wave-based plasma diagnostics such as interferometry, reflectrometry, and ECE imaging in magnetic confinement devices[1, 2]. In addition, the present study is a response to the inadequacy of usual geometrical optics for the ray-tracing of an electromagnetic wave beam in the above-mentioned frequency ranges. Recently, striking differences between geometrical optics and wave optics based on Maxwell equations have been reported[3].

In this paper, we study the propagation of electromagnetic waves in the microwave and millimeter-wave regimes in toroidal plasma. Figure 1 shows the simulation box in which the white-colored region indicates the plasma and wave-guiding region to be computed, and the gray-colored region indicates a region unnecessary for the computation of the wave propagation. In order to separate these two regions, we introduce an artificial conductivity σ and the real part of dielectric constant ε, normalized by ε_0 (i.e., $\varepsilon = \text{Re}(\varepsilon)/\varepsilon_0$). The basic equations for simulations are

$$\frac{\partial}{\partial t} \mathbf{B} = - \nabla \times \mathbf{E} \quad (1)$$

$$\frac{\partial}{\partial t} \mathbf{E} = - \frac{c^2}{\varepsilon(r)} \nabla \times \mathbf{B} - \frac{1}{\varepsilon_0 \varepsilon(r)} [J + \sigma(r) \mathbf{E}] \quad (2)$$

where \mathbf{E} and \mathbf{B} are electromagnetic wave fields, \mathbf{J} the plasma current, c the speed of light, ω_{pe} the electron plasma frequency, and B_0 an external magnetic field. The last term of the right-hand side of eq.(2) is an artificial one introduced to separate the above two regions already discussed. We here assume that $\sigma/\omega \varepsilon_0 = 0$, $\varepsilon_r = 1$ for plasma and the wave-guiding region (white-colored); otherwise (gray-colored) $\sigma/\omega \varepsilon_0 = 10$, $\varepsilon_r = 10$. In this case, the electromagnetic wave becomes strongly damped in the gray-colored region, and the interface...
between the two regions plays the role of a wall boundary creating wave reflections. The details regarding this numerical scheme will be reported elsewhere. If we assume a density profile \(n(r) \) and the external magnetic field \(B_0(r) \) in the above equations, we can perform a simulation run for wave propagation under the initial condition for an incident electromagnetic wave. In the present simulation, we assume a tokamak-like magnetic field profile for \(B_0 \) given by

\[
B_x = B_0 \frac{R}{r} \frac{z - z_0}{r},
\]

\[
B_z = -B_0 \frac{R}{r} \frac{x - x_0}{r},
\]

\[
B_y = B_0 \sqrt{2} \frac{r - R}{d} \exp\left(-\frac{r - R^2}{d}\right)
\]

where \(r^2 = (x - x_0)^2 + (z - z_0)^2 \), \(R \) is the major radius, and \(B_0 \) is the value at \(r = R \). The toroidal field is then given by \(B_t = (B_x^2 + B_y^2)^{1/2} = 1/r \), and \(B_y \) corresponds to the poloidal field. We also assume a Gaussian density profile for \(n(r) \) given by

\[
n = n_0 \exp\left[-\frac{(r - \frac{R}{a})^2}{a}\right]
\]

The number of grids in a simulation box is \(3,000 \times 3,000 \). In the simulation, the time step \(\Delta t = 0.1\omega_0^{-1} \), and the mesh size is \(\Delta x = \Delta z = 0.1c/\omega_0 \), where \(\omega_0 \) is a reference frequency. The electron plasma, electron cyclotron, and incident wave frequencies are also normalized by \(\omega_0 \), and the plasma and other simulation parameters can then be scaled by \(\omega_0 \). The following parameters are used: \(R = 107 \) cm, \(a = 18 \) cm, \(B_0 = 0.43 \) T, and \(n_0 = 0.6 \times 10^{12} \) cm\(^{-3}\). The incident wave is expressed as \(E_z(x, t) = \exp\left[-(z - z_1)^2/L^2\right]\sin(\omega t) \) on the lower boundary in \(x \), where \(\omega = 8 \) GHz, \(z_1 = 107 \) cm, and \(L = 7.2 \) cm when we set \((x_0, z_0) = (0, 0)\).

Fig. 2 The snap shot of the electromagnetic wave field at \(t = 23.5 \) ns, \(E_x, E_y, E_z \) (from left to right in upper side) and \(B_x, B_y, B_z \) (from left to right in lower side).

We show the result of a simulation run. In the present parameters, there is no cutoff and resonance in the plasma region. Figure 2 shows a snap shot of the electromagnetic wave field at \(t = 23.5 \) ns, where \(E_x, E_y, E_z \) (from left to right in upper side) and \(B_x, B_y, B_z \) (from left to right in lower side) are shown in the absolute values. We see that a part of the electromagnetic wave propagates in the toroidal direction while repeating the reflection with the wall, which is shown by two solid circles.

Finally, this work was partly supported by the LHD collaboration project of the NIFS.