Plasma Current Start-up, Ramp-up, and Achievement of Advanced Tokamak Plasmas without the Use of Ohmic Heating Solenoid in JT-60U

TAKASE Yuichi, FUKUDA Takeshi1), GAO Xiang1), GRYAZNEVICH Mikhail2), IDE Shunsuke1), ITOH Satoshi1), KAMADA Yutaka1), MAEKAWA Takashi4), MITARAI Osamu2), MIURA Yukitoshi1), SAKAMOTO Yoshiteru1), SHIRAIWA Syun'ichi, SUZUKI Takahiro1), TANAKA Shigetoshi6), TANIGUCHI Tomokazu7), USHIGUSA Kenkichi1) and JT-60 Team1)

Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 113-0033, Japan
1)Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Ibaraki 311-0193, Japan
2)EURATOM/UKAEA Fusion Association, Abingdon OX14 3DB, UK
3)Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan
4)Graduate School of Energy Science, Kyoto University, Kyoto 606-8502, Japan
5)School of Engineering, Kyushu Tokai University, Kumamoto 862-8652, Japan
6)Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
7)Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan

(Received 6 July 2002 / Accepted 11 July 2002)

Formation of a high performance plasma with $\beta_p = 3.6$, $\beta_N = 1.6$, $H_{\text{poloy}} = 1.6$ without the use of the Ohmic heating solenoid was demonstrated for the first time. Plasma start-up and plasma current ramp-up were accomplished by vertical field and shaping coils, combined with heating and current drive by EC, LH and NBI. The q profile is deeply reversed with $q_{\text{min}} = 5.6$ at $r/a = 0.7$, and the bootstrap current fraction was at least 90%. This result opens up the possibility of eliminating the Ohmic heating solenoid, which has a great impact on improving tokamak and ST reactor designs.

Keywords: start-up, current ramp-up, current drive, bootstrap current, advanced tokamak

In conventional tokamak operation, Ohmic heating (OH) solenoid is used to ramp up the plasma current (I_p) inductively. If I_p ramp-up and sustainment could be accomplished without the use of the OH solenoid, substantial improvement can be achieved in the economic competitiveness of a fusion reactor by a more compact design with higher magnetic field [1,2]. In particular, elimination of the OH solenoid is a necessity for a low aspect ratio spherical tokamak (ST) reactor [3].

Plasma start-up and I_p ramp-up by electron cyclotron (EC) and lower hybrid (LH) waves and the vertical field (B_v) coil alone (RF tokamak) were first achieved on the WT-2 tokamak [4]. Several experiments have confirmed such a start-up scenario and its variations, and recently a quasi-steady-state plasma was maintained for 30 seconds on the TRIAM-1M tokamak [5]. However, these plasmas have low plasma current and low plasma density. It has been suggested that plasma heating and B_v ramp-up can provide efficient means of I_p ramp-up, especially in ST plasmas [6,7]. The first demonstration of plasma start-up, I_p ramp-up, and subsequent transition to a high-performance advanced tokamak plasma without the use of the OH solenoid is reported in this paper.

The experiment was carried out on the JT-60U tokamak. The poloidal field coil configuration is shown in Fig. 1, together with a large bore plasma (black) required during the LHCD (2 GHz) I_p ramp-up phase to maintain acceptable LH coupling, and an inward shifted small bore plasma (grey) used during the neutral beam (NB) heated high performance phase to reduce the
ripple loss and increase the density limit. In these experiments the current in the F-coil, which corresponds to the OH solenoid, was kept constant at zero (Fig. 2). The vertical field coil (VR) and the triangularity coil (VT) were used for \(I_p \) ramp-up, position control, and shaping control.

In the example shown in Fig. 2 (\(B_T = 13.45 \) Tm), a plasma with \(I_p = 0.2 \) MA was formed by a combination of EC (110 GHz) preionization and induction by VR and VT coils. The VR coil current was ramped from 0 to +1.1 kA (positive current is defined as the direction that produces \(B_v \) required for equilibrium) and the VT coil current was ramped from –7.5 kA to +6.8 kA from \(t = 2.1 \) to 2.25 s. Such an operation is necessary because if both coils were ramped from zero, the resultant \(B_v \) becomes too high to hold the plasma in equilibrium. These current ramps provided a loop voltage of 6 V. Plasma current started to ramp up at 2.12 s, while the total \(B_v \) was still negative. A transition to a diverted configuration is accomplished at 2.5 s, and further ramp-up to 0.4 MA was achieved by 6 s, by a combination of electron heating and current drive by EC and LH waves.

This current of 0.4 MA is high enough to confine the injected beam ions. Density was increased by gas puffing from 5.8 to 7 s to reduce the beam shine-through, and 85 kV NB injection was started from 6 s. The equilibrium was shifted from the LH configuration to the NB configuration from 6.5 to 7 s, and LH was turned off at 6.9 s. Tangential beams were injected first because of their smaller shine-through fraction. Perpendicular beams were injected under stored energy feedback, which resulted in the \(P_{PB} \) waveform shown in Fig. 2. This was necessary to avoid the beta collapse caused by excessive heating. In addition to the noninductive current drive effect, \(I_p \) ramps up due to the flux provided by the current increase in VR and VT coils. Addition of the 376.5 kV negative ion based neutral beam (NNB) contributes to further ramp-up by current drive and \(\beta_p \) increase (NNB drop-outs were not intentional). In a similar discharge with higher NB power, a beta collapse terminated the plasma at \(I_p = 0.7 \) MA.

The plasma generated by this scenario had an internal transport barrier (ITB) and an edge transport barrier (H mode). The profiles of density and temperatures as well as the q profile at \(t = 8.5 \) s (minor radius is 0.915 m at this time) are shown in Figs. 3(a)-(d). The current density in the plasma core is nearly zero (current hole [8]), and the q profile is extremely reversed with \(q_{\text{min}} = 5.6 \) at \(r/a = 0.7 \) and \(q_{95} = 12.8 \). At 8.5 s, \(\beta_p = 3.6 \) (\(\varepsilon \beta_p = 1.0 \)), \(\beta_S = 1.6 \), and \(H_{H98y2} = 1.6 \) were achieved. Further optimization is still possible. These profiles and confinement improvement factor are typical of high-confinement reversed magnetic shear (RS) plasmas in JT-60U. A preliminary evaluation of the bootstrap current fraction yielded \(f_B = 90\% \) as a lower bound, assuming that there are no bootstrap currents inside the ITB. Such high bootstrap fraction and confinement improvement factor are favorable for realizing steady-state operation of a fusion reactor [9].
In fact, it has already been demonstrated on JT-60U that a high-performance RS plasma with $f_{\text{elas}} = 80\%$ can be sustained by NBCD at $I_p = 0.8 \text{ MA}$ [10].

The results presented here give confidence in reducing, and eventually eliminating the Ohmic heating solenoid from a tokamak fusion reactor, which has a great impact on its economic competitiveness.

The authors acknowledge fruitful discussions with participants of the 15th TRIAM Workshop on Plasma Ramp-up Experiments without the Center Solenoid [11] hosted by Kyushu University.