Thermal Instability of a Thermonuclear Plasma in a DD Fusion Reactor. III. Inhomogeneous Temperature

Takasi Kurasawa, Takenori Itoh† and Yasuaki Yaguchi

(Received October 22, 1985)

Abstract

A thermal thermonuclear instability of a deuterium plasma with an inhomogeneous temperature in a strong magnetic field is studied theoretically. The growth rate of the instability is obtained. The plasmas with an inhomogeneous temperature in a DD fusion reactor and in a catalyzed DD fusion reactor are unstable for the thermal instability.

§ 1. Introduction

In Paper I, 1) a thermal thermonuclear instability of a homogeneous deuterium plasma in a strong magnetic field was studied. In Paper II, 2) the instability in a catalyzed DD fusion reactor was discussed.

In this paper, we present an analysis of the instability of a deuterium plasma with an inhomogeneous temperature. The thermal instability of an inhomogeneous plasma in DT fusion reactors has been discussed by some authors. 3-4)

Kolesnichenko, Reznik and Yavorskij 3) have developed the method for investigating the stability of a steady-state thermonuclear reaction in an inhomogeneous deuterium-tritium plasma. They have analyzed the differential equation of the second order in partial derivatives which describes the instabilities of the energy balance in a thermonuclear DT Plasma.

We want to know the stability of a DD fusion reactor. In this paper, we will use the method developed in ref. 3) for analyzing the stability of a thermonuclear deuterium plasma.

In § 2, the instability in a DD fusion reactor is studied. The instability in a catalyzed DD fusion reactor is discussed in § 3.

§ 2. DD fusion reactor

First, we discuss the instability in a DD fusion reactor. We assume that (1) the
deuterium plasma is isothermal \((T_e = T_i = T) \), (2) the plasma energy losses are due only to heat conduction across a magnetic field and bremsstrahlung, (3) the number density \(n \) and the Coulomb logarithm \(\lambda \) are constant in space and time, and (4) the magnetic field \(B \) is uniform in space and constant in time.

For simplicity, we discuss the plasma of a plane layer. Then, we have the following equation for the energy balance: ¹)

\[
3n \frac{\partial T(x,t)}{\partial t} = \frac{\partial}{\partial x} \left(\frac{An^2}{T_{1/2}(x,t)} \frac{\partial T(x,t)}{\partial x} \right) + P(T),
\]

where

\[
P(T) = Cn^2 T^{1.37} - Dn^2 T^{1/2},
\]

\[
A = 4.48 \times 10^{-4} \frac{(\lambda/10)}{B^2},
\]

\[
C = 1.21 \times 10^{-16},
\]

\[
D = 3.34 \times 10^{-15},
\]

\[
\lambda = 33.48 + \frac{1}{0.8686} \log_{10} \frac{T^3}{n},
\]

\((T(\text{keV}), n(\text{cm}^{-3}), B(\text{G}), t(\text{sec}), x(\text{cm})) \).

The \(x \)-axis is perpendicular to \(B \) and to the surface of the layer.

We assume that the temperature of the 0-th order \(T_0 \) depends only on \(x \). Then, we obtain the equation of the 0-th order from eq. (1):

\[
\frac{d}{dx} \left(\frac{An^2}{T_{1/2}^2(x)} \frac{dT_0(x)}{dx} \right) + P(T_0) = 0.
\]

Putting

\(T(x,t) = T_0(x) + T_1(x,t); \ T_0 \gg T_1 \),

and using eq. (7), we have the first order equation from eq. (1):

\[
3n \frac{\partial T_1(x,t)}{\partial t} = An^2 \frac{\partial^2}{\partial x^2} \left(\frac{T_1(x,t)}{T_{1/2}^2(x)} \right) + \frac{dP(T_0)}{dT_0} T_1(x,t).
\]

If we put

\(T_1(x,t) = T_1(x)e^{ut} \),

we obtain the following equation from eq. (8):

\[
An^2 \frac{d^2}{dx^2} \left(\frac{T_1(x,t)}{T_{1/2}^2(x)} \right) + \frac{dP(T_0)}{dT_0} T_1(x,t) = 3ns T_1(x).
\]
We assume that the perturbation $T_1(x)$ of the temperature is symmetric with respect to $x = 0$:

$$\frac{dT_1(x)}{dx} = 0 \quad \text{at} \quad x = 0 ,$$

(11)

and vanishes at the plasma boundaries $x = \pm L$:

$$T_1(x) = 0 \quad \text{at} \quad x = \pm L .$$

(12)

When $s = 0$, the differential equation (10) was solved by Kolesnichenko, Reznik and Yavorskij,3) who obtained the following solutions:

$$T_1^{(1)}(x) = \frac{\partial T_0(x)}{\partial T(0)} ,$$

(13)

$$T_1^{(2)}(x) = \frac{dT_0(x)}{dx} ,$$

(14)

where $T(0)$ is the temperature at the center $x = 0$. As easily seen, the first solution $T_1^{(1)}(x)$ satisfies the boundary condition (11), but the second solution $T_1^{(2)}(x)$ does not. The function $T_0(x)$ is the solution of the 0-th order equation (7) under the following boundary conditions: $dT_0(x)/dx = 0$ at $x = 0$ and $T_0(x) = 0$ at $x = \pm L$. Here, the value of L depends on the temperature at the center $T(0) : L = L(T(0))$. As done in ref. 3), we can express the boundary value problem (10), (11) and (12) in an integral form. If we put in eq. (10)

$$u(x) = \alpha(x) T_1(x) ,$$

(15)

where

$$\alpha(x) = \frac{An}{3 T_0^{1/2}} ,$$

(16)

we have the following equation:

$$\frac{d^2 u(x)}{dx^2} + \frac{\nu(x)}{\alpha(x)} u(x) = \frac{s}{\alpha(x)} u(x) ,$$

(17)

where

$$\nu(x) = \frac{1}{3n} \frac{dP(T_0)}{dT_0} .$$

(18)

The solutions of eq. (17) with $s = 0$ are given by

$$u_1(x) = \alpha(x) T_1^{(1)}(x) ,$$

(19)

$$u_2(x) = \alpha(x) T_1^{(2)}(x) .$$

(20)

We assume that a Green's function $G(x, \xi)$ satisfies the following equation:

$$\frac{d^2}{dx^2} G(x, \xi) + \frac{\nu(x)}{\alpha(x)} G(x, \xi) = \delta(x-\xi) .$$

(21)
Then, the solution \(u(x) \) of eq. (17) satisfies the following integral equation:

\[
 u(x) = c_1 u_1(x) + s \int_0^L d \xi \ G(x, \xi) \ \frac{u(\xi)}{a(\xi)},
\]

where \(c_1 \) is a constant. Putting

\[
 G(x, \xi) = \begin{cases}
 a \ u_1(x) \ u_2(\xi), & \text{for } 0 \leq x < \xi, \\
 a \ u_1(\xi) \ u_2(x), & \text{for } \xi < x \leq L,
 \end{cases}
\]

and using the condition that is derived from the integration of both sides of eq. (21) with respect to \(x \) for the small interval \(\xi - \varepsilon \leq x \leq \xi + \varepsilon \):

\[
 \lim_{\varepsilon \to 0} \left\{ \frac{dG}{dx} \bigg|_{x=\xi+\varepsilon} - \frac{dG}{dx} \bigg|_{x=\xi-\varepsilon} \right\} = 1,
\]

we have

\[
 \frac{1}{a} = u_1(\xi) \ u'_2(\xi) - u'_1(\xi) \ u_2(\xi).
\]

Substituting eqs. (19) and (20) into the above equation (25), we obtain

\[
 \frac{1}{a} = a^2(\xi) \left\{ \frac{\partial T_0(\xi)}{\partial T(0)} \ \frac{d^2 T_0(\xi)}{d\xi^2} - \frac{1}{2} \ \frac{\partial}{\partial T(0)} \ \left(\frac{d T_0(\xi)}{d\xi} \right)^2 \right\}.
\]

Now, from the equation (7) of the 0-th order, we have \(^5\)

\[
 \frac{d^2 T_0(x)}{dx^2} = T_0^{1/2}(x) \left\{ \frac{1}{2T_0^{3/2}(x)} \left(\frac{d T_0(x)}{dx} \right)^2 - \frac{P(T_0)}{A n^2} \right\},
\]

and

\[
 \frac{d T_0(x)}{dx} = -\left\{ \frac{2}{A} \ T_0(x) \ \left(F - \frac{C}{1.87} T_0^{1.87}(x) + D T_0(x) \right) \right\}^{1/2},
\]

where

\[
 F = \frac{C}{1.87} \ T_0^{1.87}(0) - D T(0),
\]

and we used the condition

\[
 \frac{d T_0(x)}{dx} = 0 \quad \text{at} \quad x = 0.
\]

Substituting eqs. (27) and (28) into eq. (26), we obtain

\[
 \frac{1}{a} = -\frac{A}{9 T_0^{1/2}(0)} \ P(T_0)
\]

Now, substituting eq. (23) into eq. (22), we have
Using eqs. (15), (19) and (20), we can write eq. (32) as follows:

\[T_I(x) = c_I T_I^{(1)}(x) + sa \left[\int_0^x d\xi \alpha(\xi) T_I^{(1)}(\xi) T_I^{(2)}(x) T_I(\xi) \right. \]

\[\left. + \int_x^L d\xi \alpha(\xi) T_I^{(1)}(\xi) T_I^{(2)}(\xi) T_I(\xi) \right] . \]

(33)

Transforming the integral of the second term in the square brackets in eq. (33) as follows:

\[\int_x^L d\xi = \int_0^L d\xi - \int_0^x d\xi , \]

(34)

we obtain

\[T_I(x) = a_I T_I^{(1)}(x) + sa \int_0^x d\xi \alpha(\xi) \left(T_I^{(1)}(\xi) T_I^{(2)}(x) - T_I^{(1)}(\xi) T_I^{(2)}(\xi) \right) T_I(\xi) , \]

(35)

where \(a_I \) is a constant. Substituting eqs. (16) and (31) into eq. (35), we have the following integral equation:

\[T_I(x) = a_I T_I^{(1)}(x) + s \int_0^x d\xi K(x, \xi) T_I(\xi) , \]

(36)

where

\[K(x, \xi) = \frac{3n}{P(T(0))} \frac{T_I^{1/2}(0)}{T_I^{1/2}(\xi)} \left[T_I^{(1)}(x) T_I^{(2)}(\xi) - T_I^{(1)}(\xi) T_I^{(2)}(x) \right] . \]

(37)

The growth rate \(s \) is obtained from the boundary condition (12) at \(x = L \):

\[T_I(L) = a_I T_I^{(1)}(L) + s \int_0^L d\xi K(L, \xi) T_I(\xi) = 0 . \]

(38)

Then, we have

\[s = -\frac{a_I T_I^{(1)}(L)}{\int_0^L d\xi K(L, \xi) T_I(\xi)} . \]

(39)

If we put

\[T_I(x) = a_I \rho(x) , \]

(40)

where

\[\rho(0) = 1 \quad \text{and} \quad \rho(L) = 0 , \]

(41)
we obtain
\[s = - \frac{T_1^{(1)}(L)}{\int_0^L d\xi \ K(L, \xi) \ p(\xi)}. \] (42)

Now, we have the quadrature of the equation of the 0-th order (7):
\[L - x = \left(\frac{A}{2} \right)^{1/2} \int_0^x dT_0 \ \frac{1}{T_0^{1/2} (F - \frac{C}{1.87} T_0^{1.87})^{1/2} + D T_0^{1/2}}. \] (43)

where we used the condition
\[T_0(x) = 0 \quad \text{at} \quad x = L. \] (44)

Differentiating both sides of the above equation (43) with respect to \(T(0) \) for fixed \(x \), we have
\[\frac{\partial T_0(x)}{\partial T(0)} = \left[\frac{2}{A} T_0(x) \ (F - \frac{C}{1.87} T_0^{1.87} + D T_0(x)) \right]^{1/2} \left\{ \frac{dL}{dT(0)} \right\}
+ \left(\frac{C T_0^{0.87} (0) - D}{2} \right) \left(\frac{A}{2} \right)^{1/2} \int_0^x dT_0 \ \frac{1}{T_0^{1/2} (F - \frac{C T_0^{1.87}}{1.87}) + D T_0^{3/2}}. \] (45)

From the above equation (45), we obtain
\[T_1^{(1)}(L) = \left(\frac{\partial T_0(x)}{\partial T(0)} \right)_{x = L} = \left(\frac{2}{A} T_0(L) F \right)^{1/2} \frac{dL}{dT(0)}. \] (46)

The kernel \(K(L, \xi) \) is given by
\[K(L, \xi) = \frac{3n T_0^{1/2}(0)}{P(T(0)) T_0^{1/2}(\xi)} \left[\left(\frac{\partial T_0(x)}{\partial T(0)} \right)_{x = L} \frac{dT_0(\xi)}{dT(0)} \right] - \left(\frac{dT_0(x)}{dx} \right)_{x = L}. \] (47)

Substituting eqs. (46), (28) and (45) into the above equation (47), we obtain
\[K(L, \xi) = \frac{3}{2n} \left(\frac{2}{A} T_0(L) F \right)^{1/2} \left(F - \frac{C T_0^{1.87}(\xi)}{1.87} \right)
+ D T_0(\xi)) \right)^{1/2} \int_0^{T_0(\xi)} dT_0 \ \frac{1}{T_0^{1/2} (F - \frac{C T_0^{1.87}}{1.87} + D T_0)^{3/2}}. \] (48)
Substituting eqs. (46) and (48) into eq. (42), we obtain the growth rate

\[s = - \left[\frac{3}{2n} \int_0^L d\xi \rho(\xi) \left(F - \frac{CT_0^{1.87}(\xi)}{1.87} + DT_0(\xi) \right) \right]^{1/2} \cdot \int_0^L dT_0 \frac{dL}{dT} \frac{I}{T_0^{1/2} \left(F - \frac{CT_0^{1.87}}{1.87} + DT_0 \right)^{3/2}} \] \quad (49)

The sign of \(s \) is determined by that of \(dL/dT(0) \) since we may consider only the case \(\rho(x) > 0 \).

If we assume that the growth rate \(s \) is small, we have an approximate solution of the integral equation (36) as follows:

\[T_1(x) \approx a_1 T_1^{(1)}(x) \quad (50) \]

Substituting

\[\rho(x) = T_1^{(1)}(x) = \frac{\partial T_0(x)}{\partial T(0)} \quad (51) \]

into eq. (49) and using the approximation

\[\frac{\partial T_0(x)}{\partial T(0)} \approx \frac{T_0(x)}{T(0)} \quad (52) \]

we have an estimate of \(s \):

\[s = - \frac{2P(T(0))}{3nL} \cdot \frac{dL}{dT(0)} \quad (53) \]

In order to see the \(T(0) \)-dependence of \(L \) analytically, we use the following approximation

\[P_c = C' n^2 T^{3/2} \quad (54) \]

in place of the first term in the r.h.s. of eq. (2). Determining the constant \(C' \) from the following condition

\[C T^{1.37} = C' T^{3/2} \quad \text{at} \quad T = 100 \text{ keV} \quad (55) \]

we have

\[C' = 6.65 \times 10^{-17} \quad (56) \]

When we use the approximation (54), we have the equation of the 0-th order in place of eq. (7):

\[\frac{d}{dx} \left(\frac{An^2}{T_0^{1/2}(x)} \frac{dT_0(x)}{dx} \right) + C' n^2 T_0^{3/2}(x) - Dn^2 T_0^{1/2}(x) = 0 \quad (57) \]
Then, we have the quadrature of the above equation (57):

\[
x = \left(\frac{A}{2} \right)^{1/2} \int_{0}^{T(0)} T_{0}(\xi) \frac{1}{T_{0}^{1/2} \left(F' - \frac{C'}{2} T_{0}^{2} + DT_{0} \right)^{1/2}} dT_{0}, \tag{58}
\]

where

\[
F' = \frac{C'}{2} T^{2}(0) - DT(0). \tag{59}
\]

Using the boundary condition (44) in eq. (58), we have

\[
L = \left(\frac{A}{2} \right)^{1/2} \int_{0}^{T(0)} dT_{0} \frac{1}{T_{0}^{1/2} \left(F' - \frac{C'}{2} T_{0}^{2} + DT_{0} \right)^{1/2}}. \tag{60}
\]

If we put \(\xi = T_{0}/T(0) \) in eq. (60), we have

\[
L = \left(\frac{A}{C'} T(0) \right)^{1/2} \int_{0}^{1} d\xi \frac{1}{\left[\xi (1-\xi) (\xi + 1 - b) \right]^{1/2}}, \tag{61}
\]

where

\[
b = \frac{2D}{C'} \frac{T(0)}{T(0)} = \frac{100}{T(0)}. \tag{62}
\]

Putting \(\xi = 1 - u^2 \) in eq. (61), we obtain

\[
L = 2 \left(\frac{A}{C'} T(0) \right)^{1/2} K(k), \tag{63}
\]

where \(K(k) \) is the complete elliptic integral of the first kind

\[
K(k) = \int_{0}^{1} du \frac{1}{\left[(1-u^2) (1-k^2 u^2) \right]^{1/2}}, \tag{64}
\]

\[
k = \frac{1}{(2-b)^{1/2}} = \frac{1}{\left(2 - \frac{100}{T(0)} \right)^{1/2}}. \tag{65}
\]

Substituting eqs. (3), (56) and (65) into eq. (63), we obtain

\[
L = \frac{3.67 \times 10^6 (\lambda / 10)^{1/2}}{B (T(0) - 50)^{1/2}} K(k). \tag{66}
\]

Differentiating both sides of the above equation (66) with respect to \(T(0) \), we have

\[
\frac{dL}{dT(0)} = -\frac{3.67 \times 10^6 (\lambda / 10)^{1/2}}{2B (T(0) - 50)^{3/2}} \left\{ K(k) + \frac{50}{T(0) - 50} \cdot \frac{dK(k)}{d(k^2)} \right\}. \tag{67}
\]
Since
\[K(k) > 0 \quad \text{and} \quad \frac{dK}{d(k^2)} > 0 \quad , \] (68)
we obtain
\[\frac{dL}{dT(0)} < 0 \quad . \] (69)
Therefore, the sign of the growth rate \(s \) is positive :
\[s \sim - \frac{dL}{dT(0)} > 0 \quad . \] (70)
We conclude that the plasma is unstable for the thermal instability.

The \(T(0) \)-dependence of \(L \) for \(B = 10^5 G \) and \(\lambda \approx 22 \) is given in Fig. 1. In this case, for \(T(0) = 150 \text{ keV} \), we have from Fig. 1
\[\frac{dL}{dT(0)} \approx - 8.5 \times 10^{-2} \text{ cm/keV} \quad , \]
\[L \approx 11.7 \text{ cm} \quad . \]
Using eq. (53), we obtain the order of the growth rate \(s \) for \(T(0)=150 \text{ keV} \), \(B = 10^5 G \) and \(\lambda \approx 22 \) :
\[s \approx 3.6 \times 10^{-16} n \quad \text{1/sec} \quad . \]
When \(n \approx 10^{16} \quad 1/\text{cm}^3 \), we have
\[s = 3.6 \quad \text{1/sec} \quad . \]
Similarly, for \(T(0)=200 \text{ keV} \), \(B = 10^5 G \), and \(\lambda \approx 22 \), we have
\[\frac{dL}{dT(0)} \approx = - 3.5 \times 10^{-2} \text{ cm/keV} \quad , \]
\[L \approx 9.01 \text{ cm} \quad , \]
\[s \approx 4.9 \times 10^{-16} n \quad \text{1/sec} \quad . \]

§ 3. Catalyzed DD fusion reactor

Secondly, we discuss the instability in a catalyzed DD fusion reactor. The growth rate \(s \) in a catalyzed DD fusion reactor is obtained similarly by the method done in § 2. Using eqs. (I.2.13) and (II.6), we have
\[P_{fc} = C_I n^2 T^{1.37}, \quad \text{(71)} \]

where
\[C_I = 6.68 \times 10^{-16}. \quad \text{(72)} \]

Using \(C_I \) in place of \(C \) in § 2, we obtain the growth rate
\[s = - \left[\frac{3}{2n} \int_0^L d\xi \rho(\xi) \left(F_I - \frac{C_I T_0^{1.87}(\xi)}{1.87} + DT_0(\xi) \right) \right]^{1/2} \cdot \int_0^{T_0(\xi)} \frac{1}{T_0^{1/2} \left(F_I - \frac{C_I T_0^{1.87}}{1.87} + DT_0 \right)^{3/2}} \right]^{-1} \frac{dL}{dT(0)}, \quad \text{(73)} \]

where
\[F_I = \frac{C_I T_0^{1.87}(0)}{1.87} - DT(0), \quad \text{(74)} \]
\[L = \left(\frac{A}{2} \right)^{1/2} \int_0^{T(0)} \frac{1}{dT} \left(F_I - \frac{C_I T_0^{1.87} + DT_0}{1.87} \right)^{1/2}. \quad \text{(75)} \]

Now, we have an estimate of
\[s \approx - \frac{2P(T(0))}{3nL} \cdot \frac{dL}{dT(0)}, \quad \text{(76)} \]

where
\[P(T(0)) = C_I n^2 T^{1.37}(0) - Dn^2 T^{1/2}(0). \quad \text{(77)} \]

When we use the approximation
\[P_{fc} = C_I' n^2 T^{3/2}, \quad \text{(78)} \]
we have
\[C_I' = 3.67 \times 10^{-16}, \quad \text{(79)} \]
in place of \(C' \) in § 2. In place of \(b \) in § 2, we have
\[b_I = \frac{2D}{C_I T(0)} = \frac{18.2}{T(0)} \quad \text{(80)} \]

Then, we have
\[L = \frac{1.56 \times 10^6 (\lambda/10)^{1/2}}{B(T(0) - 9.1)^{1/2}} K(k_I), \quad \text{(81)} \]

where
\[k_I = \frac{1}{\left(2 - \frac{18.2}{T(0)} \right)^{1/2}} \quad \text{(82)} \]
We conclude that the plasma in the catalyzed DD fusion reactor is also unstable for the thermal instability.

The $T(0)$-dependence of L for $B = 10^5 G$ and $\lambda \approx 22$ is given in Fig. 2. In this case, for $T(0) = 50$ keV, we have from Fig. 2

$$\frac{dL}{dT(0)} \approx -1.0 \times 10^{-1} \text{ cm/keV} ,$$
$$L \approx 7.12 \text{ cm} ,$$
$$s \approx 1.1 \times 10^{-15} n \text{ 1/sec} .$$

When $n \approx 10^{15} 1/\text{cm}^3$, we have
$$s \approx 1.1 \text{ 1/sec} .$$

Similarly, for $T(0) = 100$ keV, $B = 10^5 G$ and $\lambda \approx 22$, we have

$$\frac{dL}{dT(0)} \approx -2.8 \times 10^{-2} \text{ cm/keV} ,$$
$$L \approx 4.62 \text{ cm} ,$$
$$s \approx 1.3 \times 10^{-15} n \text{ 1/sec} .$$

§ 4. Conclusions

We have obtained the growth rates for the thermal thermonuclear instability of the deuterium plasma with an inhomogeneous temperature in a strong magnetic field. The growth rate s in a DD fusion reactor is given by

$$s = - \frac{2n}{3L} \left\{ 1.21 \times 10^{-16} (T(0))^{1.37} - 3.34 \times 10^{-15} (T(0))^{1/2} \right\} \cdot \frac{dL}{dT(0)} \text{ 1/sec} ,$$

where $n(\text{cm}^{-3})$ is the ion number density, $L(\text{cm})$ a half thickness of the plane plasma layer and $T(0)$(keV) the temperature at the center. In a catalyzed DD fusion reactor, the growth rate s is given by

$$s = - \frac{2n}{3L} \left\{ 6.68 \times 10^{-16} (T(0))^{1.37} - 3.34 \times 10^{-15} (T(0))^{1/2} \right\} \cdot \frac{dL}{dT(0)} \text{ 1/sec} .$$

The $T(0)$-dependence of L for the strength of the magnetic field $B = 10^5 G$ and the Coulomb logarithm $\lambda \approx 22$ is given in Fig. 1 (DD fusion reactor) and Fig. 2 (catalyzed DD fusion reactor).
Since \(s > 0 \) because of \(dL/dT(0) < 0 \) in the temperature region considered in this paper, the plasmas with an inhomogeneous temperature in a DD fusion reactor and in a catalyzed DD fusion reactor are unstable for the thermal instability.

Acknowledgments

The authors would like to express their gratitude to Dr. Kenya Matsuura for valuable discussions.

References