『柔軟な専門化』に関する一考察
——キャノンに見る試作品と量産品の生産ネットワーク——

黒田英一

ビオリ，セーブルは『第二の産業分水嶺』において，大量生産システムにかわる生産方式として「柔軟な専門化」を提唱してきた。本稿は，日本の有名な精密機器メーカーのひとつであるキャノンをとりあげ，同社の生産ネットワークの事例調査により，「柔軟な専門化」の日本への敷衍化を試みている。

キャノンの生産ネットワークには2つのタイプがみられる。まず，試作品の生産ネットワークでは，専門技術を持つ協力企業が，大田，品川に立地し，試作品専業の企業を中心にゆるやかに結びつき，新製品開発という共通の目標に向かって，キャノンの製品開発を支えている。

次が，量産品の生産ネットワークである。量産品を支える企業は，地方に立地し，高品質，廉価，短納期の半品を製造している。

今回の事例調査から，試作品の生産ネットワークにおいて，「柔軟な専門化」の特徴が見いだせる結果となっている。しかも，試作品を担う企業は量産品も製造しており，現実には複雑で多面的な生産ネットワークを構成しているといえる。

キーワード：第二の産業分水嶺，柔軟な専門化，試作品の生産ネットワーク

1 はじめに

（1）本稿の目的

ビオリ，セーブルの"The Second Industrial Divide：Possibilities for Prosperity" Basic Books，1984（邦訳山之内・永易・石田訳『第二の産業分水嶺』筑摩書房，1993年）は，大量生産システムの超克を示唆した著書として知られる。ビオリ，セーブルは，第3のイタリアと呼ばれる地域の中小企業やドイツのクラフト産業，アメリカでのミニミル（電炉），日本の工作機械産業から，フォーディズムの大量生産システムに代わる生産システムを提唱した。これが「柔軟な専門化」（あるいは「柔軟な生産方式」）と呼ばれる生産システムである。この背景には，2度にわたる石油危機，変動相場制への移行により，大量生産体制が構造的危機にみまわれたことがあげられる。70年代以降経済の停滞が深まるなかで，これらの地域は発展を続け，ビオリ，セーブルは「自立した小企業のネットワークによる生産」に発展の要因を求め，この新しい生産システムを「柔軟な専門化」と定義し，クラ
フドの生産の現代的再生の可能性を唱えた。ビオリ、セーブルは「柔軟な専門化」には4つ組織形態があると述べている。4つの組織形態とは、「独立した小企業の地域的な集合体（コングロマリット）」、「ゆるやかな結びつきをもつ大企業の連合体」、「中心企業とそれと安定した関係をもつ小企業」、「独立した作業場からなる工場」である。また、「柔軟な専門化」の組織形態に共通する特徴として4つの点（「柔軟プランマニュアル」、「参加の制限」、「競争の奨励」、「競争の制限」）をあげている1)。

本稿の目的は、キャノンの試作品と量産品の生産ネットワークの事例調査により、ビオリ、セーブルが見いだした「柔軟な専門化」の「組織形態」と「組織形態に共通する特徴」が、日本の精密機器メーカーの生産ネットワークにもみられ、日本における「柔軟な専門化」の特徴を見いだして、日本への敷衍化が可能なことを試みることにある2)。

なお、キャノンというひとつの精密機器メーカーをとりあげるのは、精密機器が戦後日本の産業を自動車とともに代表する商品であり、戦後の経済成長をリードした産業であることの理由による。部品点数や製造工程の複雑さに違いがあるものの、精密機器をとりあげることにより、自動車、家電などにも類推が可能であると考えられるためである。また、キャノンをとりあげるのは、カメラから出発して複写機、半導体製造装置、映像機器へと事業を多角化していったトップメーカーであり、精密機器産業を代表するのに最適であると考えられるためである。

(2) 生産ネットワークの言葉について

ここで、生産ネットワークとは、特定の組立メーカーと長期的継続的に取引関係にある部品供給企業との連結の仕方をさすものとする。これまで生産ネットワークについては、下請け制の議論と重なり、親企業が支配し下請け企業が従属する上下関係とみる立場が目立ち、親企業が経済的強者であり下請け企業が経済的弱者とみなされてきた。しかしながら、中小企業の成長を肯定的にとらえ、前向きにとらえる立場が目立ってきた。部品企業が持つ高い技術・技能を中心に機能的に結びついた取引関係が生産ネットワークにみられ、これまでの上下関係ではとらえられない企業間関係を重視するようになってきた3)。このために本稿では、「系列」という言葉ではなく、対等に結びついたという意味で「生産ネットワーク」と呼ぶこととする。

(3) 方法論について

今回の分析方法についてふれておきたい。今回の分析の方法としては、キャノンが現在行っている試作品と量産品の2つの製品生産における部品調達にどのような企業が係わっているのか、取引関係を遡及していく事例調査により解明していくこととする。網羅的に把握するアンケート調査ではなく取引関係遡及型の事例調査を用いる理由としては、アンケート調査では得られない有機的な企業間関係が事例調
査では把握できる点にある。事例調査により取引関係の流れ、階層性の具体的・体系的な把握が可能になる。しかしながら、事例調査では、組立メーカーであるキャノンと長期、安定的な関係にある優良な中小企業が主に取り上げられ、得られた資料に偏りがみられるのも否定できないところである。また短期的で浮動的な零細な部品企業についても把握できない難点がある。しかしながら、これらの限界を踏まえつつもより具体的・体系的に把握できるのは事例調査が有効であることから、今回是事例調査の方法を用いることとした。この他に必要な文献調査により、事例調査の弱点を補うこととした。

今回の事例調査において、インタビュー対象者は、キャノンの資材購入担当者、キャノンと取引のある一次部品メーカー経営者、およびキャノンの一次部品メーカーと取引のある二次部品メーカー経営者など計5人である。資材購入担当者から取引先を紹介してもらい、さらに次の取引先を紹介してもらう、取引先選択の方法をとった。インタビュー時期は、1991年1〜2月に集中して行ったが、本稿をまとめにあたって、必要に応じて再度インタビューを実施している。

（4）本稿の構成
本稿では、まずキャノンにおける生産ネットワークの概要を概観し、次いで試作品と量産品それぞれの生産ネットワークについて述べる。最後に、この事例調査から得られるインプリケーションを整理する。

2キャノンの生産ネットワーク
キャノンは、昭和初期にカンノンカメラを開発した吉田五郎と義弟の内田三郎（証券会社出身）を創業者とする精密機器メーカーである。戦後、大田区下丸子にそれまで目黒区にあった本社・工場を移転し、御手洗組立工場の「ライカに追いつけ、追い越せ」のスローガンのもとに業績を拡大させ、カメラのトップメーカーとして発展してきた。昭和30年代には、量産体制に入りカメラ業界ではじめてのコンペア化や自動機の導入を進め、昭和30年代後半には「右手にカメラ、左手に事務機」のスローガンのもとに積極的な多角化を行った。カメラから新事業分野へ事業が拡大していった頃から東京の城南地区の中小企業との間で生産ネットワークが形成されてきた。この背景には、複写機は、カメラ以上に部品の点数が多く、工程も複雑であり、協力企業となる熟練した中小の企業群が必要であったからである。大田区への立地がその意味でメリットが多かった。キャノンは従来から外注先企業の育成に注力することで知られており、1960年（昭和35年）それまで各工場ごとに違いがあった外注管理方式を統一するために資材室を本社に設置し、翌1961年（昭和36年）には外注管理規定を制定した。昭和40年代には、協力工場巡回制度、優良工場表彰制度、管理検査制度などを設け、また協力工場の経営者・管理職を対象とした教育コースも設置している。
生産規模を拡大していくには新たな工場が必要となり、1960年（昭和35年）外
城県取手にキャノネット（中級カメラで昭和35年販売し大ヒットとなった）の量産工場を新設した。1969年（昭和44年）には福島工場を新設し、昭和40年代後半には海外生産にも進出している。取手工場は、後に複写機の工場となり、昭和50年代から生産拠点が下丸子から取手工場に移管され、下丸子は試作・開発部門に変わってきた。取手工場などへ生産機能が移転すると、取引先である多くの中小企業もキャノンの要請により移転していった。川崎にある玉川工場も下丸子同様に生産機能を地方に移している。このため、川崎は下丸子同様に試作・開発部門の拠点となっている。

キャノノンの取引先企業は現在約1,000社であり、取引先の下請け企業まで含めると3,000〜5,000社になる。このうち東京に立地するのは数％であり、大半が地方の工場周辺に立地している。キャノノンでは1985年（昭和60年）、優良外注企業の育成のために技術革新に意欲があり、経営戦略が積極的な協力企業を中心にキャノノン協力会（77社）を組織した。この協力会はゆるやかな結びつきであり、技術・経営管理に関する情報交換、勉強会などを実施している。キャノノン協力会は、第1か第7までに部会にわかれ、電気・組み立て、金型、プレス、ガラス、包装・印刷など同業種の企業が集まる部会から組織されている。また、キャノノンでは、生産体質、財務体質から評価付けを行う協力会社認定制度を同年スタートさせている。

キャノノンが生産機能を地方へ移転したことにより、生産ネットワークについても特徴がみられる。つまり、試作品は、試作・開発の拠点である下丸子を中心とした大田、品川区に立地する中小企業により製造されている。これに対して、量産品は地方の工場を中心にその周辺の協力企業で製造されている。

３ 試作品の生産ネットワーク

まず、キャノノンの試作品生産ネットワークである。キャノノンの試作品生産ネットワークは、需要の変化に柔軟に対応でき、しかも多様な試作品を短期間に製造できる点が特徴となっている。

（1）試作品の作業内容

キャノノンの製品開発部門は、試作品を試作品専業メーカーに発注している。そのなかのひとつにN社（大田区下丸子、1965年創業）がある。N社は東京城南地区のなかでは試作品専用メーカーとしてよく知られ、顧客はキャノノンをはじめ、コーヒー、荏原製作所など70社を数える。顧客から図面を渡されればすべてのメカニック部品を調達・加工して組み立てノウハウを蓄積している。現在の受注高のうち90％が試作品の仕事であり、残り10％が量産品である（量産品については他の企業に外注で対応している）。ここで試作品の作業内容をインタビュー調査からまとめると次のようになる。

（a）研究開発部門からの発注

キャノノンの研究開発部門は、数か月ごとに新商品のモデルとなる試作品を外注す
る。例えば新商品の用紙トレイなどの試作品を発注する。
(i) CAD による詳細図面の作成
N 社では、キャノンから通信回線で送られてきた図面をもとに、CAD で細かな図面に分解して詳細図面を作成する。
(ii) N 社の協力企業に発注
詳細図面をもとに、N 社の協力企業に材料支給で加工を外注する。試作品は発注側にも不確実な要素が多いことから、作業の過程では、顧客とコミュニケーションをとりつつ仕事を進めることが多い。キャノンとは、頻繁に情報のやりとりを行い、N 社や N 社の協力企業の方から逆提案することも多い。
(iii) N 社での試作品完成と納品
加工が終了すると N 社に集められ、組立される。この後キャノンに納品する。
(iv) キャノンからの再発注
キャノンは N 社から納品された試作品に、さらに手を加えて改良する。そしてまた、N 社に試作品の発注を行う。こうした反復繰り返しの結果、ようやく新商品モデルが完成する。

(2) 試作品の生産ネットワークを構成する企業
キャノンの試作品の生産を支える N 社の協力企業は、多様な仕事に対応するため、その企業数も約 100 社を越える。キャノンの試作品の生産を支える N 社の協力企業をここで紹介しておこう。
1 事例 1——K 製作所
精密加工の協力企業の K 製作所（大田区本羽田、精密部品加工、試作・開発製品、従業員数 5 人）は、1968 年（昭和 43 年）に、K 氏が工具商社の営業マンから脱サラして創立した。1979 年頃に、親戚を通じて N 社を紹介され、それまでの自動車部品の 2 次下請けをやめて試作品の製造に転換した。見よう見まねで技術を身に着け、「機械はいいものを買う」という N 社の N 社長のアドバイスで、積極的に機械を導入してきた（89年には 3 台、90年には 1 台購入し、今では NC 主体に 6 台を保有）。現在、売上の中半が試作品で、残りが量産品の生産である。試作品は N 社だけから受注しており、量産品は同業者や商社から受注している。
2 事例 2——M 精工
特殊な精密加工の協力企業である M 精工（大田区下丸子、超精密部品加工、ポールネジ研削、円筒研削、従業員数 10 人）は、S 製作所に勤務していた K 氏が、1984 年（昭和 59 年）に創業した。会社設立後一貫してボールネジの研削、円筒研削の精密研削加工をてげけ、特にエアスビンドルの研削加工を得意としている。会社設立当初は、研削加工の最終工程が中心であったが、前工程である切削加工の一貫性を保つことが必要になり、1989 年（平成元年）に姉妹会社の M エンジニアリングを大田区矢口に設立した。M エンジニアリング社では、NC 旋盤、マシンニングセンタ、ワイヤカット放電加工機などを備え、専ら精密加工の切削加工を
行っている。M精工の売上5億円のうち、量産品の生産が中心である。利益では量産品が4,000万円、試作品が1,200〜1,300万円であり、利益的には試作品のウェイトが高くなっている⑧。

③ 事例3——AO社

板金・プレスの協力企業AO社（本社・工場川崎市多摩区登戸、仙台工場宮城県黒川郡大和町、精密板金、金型製作、従業員数60人）は1968年（昭和43年）に創立したAプレス工業が前身である。川崎の口、登戸と移転し、工場周辺の業環境が悪化してきたために、90年（平成2年）G社長の出身地の宮城県大和町に工場を新設移転した。AO社は精密板金を得意とする企業である。精密板金とは、鉄板等を機械によって折り曲げ加工することをいう。AO社は、最新の機械を駆使するために積極的な設備投資を行い、顧客の厳しい条件に対応している。仕事の大半は、50〜100個の量産品であり、わずか1〜5個しか生産しない試作品の加工もある。試作品は専らN社からの受注である⑨。

（3）N社の協力企業の特徴

事例1〜3の協力企業いずれも、専門的技術を持って、キャノンの試作品の仕事を行っている。ここでキャノンの試作品の生産ネットワークの核となっているN社の協力企業の特徴をインタビュー調査からまとめると、次のとおりである⑩。

① 大田・品川区に立地の協力企業

N社が立地する大田区に協力企業も立地しており、次に品川区に立地している。また、多摩川を越えて川崎市に立地している。いわゆる東京の城南地域を中心に協力企業が立地しており、機械金属の大集積地に生産ネットワークをかかえているのが特徴である。大田、品川の京浜工業地帯は、戦前の軍需産業の解体により、戦後は様々な機械、金属、精密加工の中小企業が立地し、今では重要な技術集積の地帯となっている。この技術集積の重要な地域にN社の協力企業も立地している。

② 切削加工、研削加工が中心の協力企業

受注した仕事は、N社が協力企業の技術レベル、処理能力に応じて割り振る形態をとっている。試作加工、切削加工という基礎的な加工からはまり、次いで仕上げである研削加工が主たる作業となる。このため切削加工、研削加工に多くの企業をかかえている点が特徴となっている。

③ 幅広い関連業種の協力企業

どんな仕事に対応するために、幅広い関連業種の企業も含まれている。例えば、プラスティック加工、塗装、メッキ、鋳物、板金、彫刻などである。同業種の企業をかかえ、また関連の業種の企業をかかえることから、受注量が増えている1社だけでこなせないときは、NC旋盤による精密加工を行う同業種の企業（例えばK製作所）に外注して任せる。またN社では出来ないボールネジの研削、円筒研削の研削加工などは、得意とする企業（例えばM精工）に、精密加工の前工程のメッキ、板金作業などはメッキ・板金専門の企業（例えばAO社）に外注する（図参照）。100
社を越える協力企業をかかえることでキャノンのどんな仕事にも、柔軟に、しかも短い期間で対応することができる。

図 N社の作業工程

製造部門での加工

組立

検査

納品

精密加工
（例 K製作所）

特殊な精密加工
（例 M精工）

板金・プレスなど
N社ができないものの
（例 A O 精工）

（大田・品川区に
計 100社程度）

N社の協力企業

④ 技術・技能に裏打ちされた協力企業
キャノンの難しい仕事や厳しい注文にも積極的に応えてきただけに、技術・技能についてはどの協力企業も強い自信を持っている。例えば、K製作所はN社の難しい仕事や面倒な仕事をこなして、N社同様の技術・技能を持つ企業として成長してきた。K製作所にN社から図面が送られてくると、材料も一緒に支給される。K製作所では、図面を引いた人の意図を汲み取ってどう加工するか決め、材料に応じた加工方法を決める。図面のなかには、意図が不明のものもあるため、発注元に直接電話して尋ねたり、こうしたらいいないのではないか、と逆提案することもある。例えば、東芝の試作品は、N社からもらった図面ではよくわからないので、N社の営業を通さずに、K製作所が直接連絡してやり合うこともある。11）
また、M精工もボールネジ研削、円筒研削については業界随一の技術力をもつことで知られている。例えば、M精工は、ある顧客先のシート数枚にも及ぶチェックリストに基づいて行われる検査も99%近くパスしている。検査項目のなかには、誤差が 1/100 ミリのものもある。こうした実績からM精工は、丁寧に仕上げる、ピシットとした仕事をする」と評判を得ている12）。

(4) 試作品の生産ネットワークの特徴と背景
① 試作品の生産ネットワークの特徴
大田、品川に立地し、幅広い関連業種と高い技術・技能によって構成されたN社およびN社の協力企業が、分業によってキャノンの試作品を製造している。このN社を中心とするキャノンの試作品生産ネットワークの事例調査からどのような点が観察できるのであろうか。ここでは「柔軟な専門化」の観点から次の点を指摘して
おきたい。

（ア）モデリストN社を核とする生産ネットワーク

第１に、N社を中心とする試作品の生産ネットワークが、モデリストの機能を持つN社が核となった生産ネットワークであるという点である。モデリスト（Modellista）とは、イタリアのアパレル産業におけるひとつの職能であり、デザイナー、センスがあり、型紙がつく、仕立てができ、工場のレイアウトの設計ができ、ワーカーの指導ができる職人をさしている13）。モデリストとデザイナーと連携することで、イタリアのファッション製品を世界に名だたるものにしているといわれる。N社のN社長もモデリストと同じ役割を果しているといえる。N社長は、長らく機械加工を経験し、旋盤加工からフライス盤加工、ボール盤加工、さらにはNC旋盤加工まで経験した。試作品の製造に必要な機械加工のすべてに通儒していることから、組立メーカー研究開発部門の多様な仕事、試作品の仕事に対応し、相談に応じることができる。

モデリストの役割をN社が果しているとはいえ、モデリストと違う点はN社が研究開発部門からの受注生産であり、モデリストのように販売のリスクを背負っている自社の企画による仕事ではない点である。高い技術・技術を強みとするあくまで自社製品を持つない受注生産であるのが特徴といえる。

（イ）情報が共有化された生産ネットワーク

第２に、情報が共有化された生産ネットワークである点である。N社とキャノンは、N社がそれまで部品加工の下請け事業中心から脱下請けをめざして試作品専業に転換した20年以上も前からの取引関係にある。長期的継続的な取引関係がここではみられ、N社とキャノンとの間には図面だけでなく経験や問題解決のノウハウも蓄積され、製品開発の情報が共有化され再生産されている。また、キャノンにとっては長期的継続的な取引により、製品開発にかかわる取引コストは遮断しているといえる。この背景には、製品開発の場面には、既製品の改良を逐次的に行うモデル・チェンジが多いことがあげられる。このため、同じモデルを過去に作製したN社に発注するほうが、以前の図面もあり、経験もあることから、N社が短期間で試作品を製造でき、キャノンにとっては長期的でみてコストを廉価になるメリットと考えられる。

（ウ）顔の見える範囲の生産ネットワーク

第３に、試作品の生産ネットワークが顔の見える範囲にある点である。つまり試作品の外注先は、試作品を受け持つ研究開発部門の近くに位置している。例えば、キャノンの研究開発部門は下丸子、川崎市高津区にあり、試作品専業のN社とは近距离に位置する。この背景には、試作品の製造には予期せぬ問題が生じることが多く、近距离内にないと頻繁に打合せと連絡ができないことがあげられよう。

（エ）動的、多層的な生産ネットワーク

第４に、試作品の生産ネットワークが動的的、多層的である点である。これまでN社の積極的な協力企業育成策が生産ネットワークの構築を可能にしてきたといえ
る。N社では業界での情報や外注先からの情報を得て、協力企業のネットワーク化につとめてきた。N社から独立した企業も3〜4社あり、こうした企業は今やN社の有力な協力企業となっている10。また、向上のみられない協力企業にはN社は発注をとめている。協力企業の活性化のために協力企業の新陳代謝を図りつつあることから、動的な生産ネットワークになっているといえる。この背景には、新製品開発が技術・技能の先端部分の競争になり、このためN社では協力企業の再編成を行うことで激しい技術革新に対応していこうという姿勢があげられよう。

そしてN社同様の生産ネットワーク化を自前で進めている協力企業もあり、試作品の生産ネットワークは多層的である。例えば、M精工では、現在10社程度の外注先の協力工場をかかえている。それはM精工と同じ業種の研削業者をはじめ、熱処理の特殊な加工を専門とする業者などで形成され、M精工も多様な受注に柔軟に対応しようとしている11。

② 試作品の生産ネットワークの背景

キャノンが試作品の製造を上記のような試作品専用メーカーとその協力企業に依存している背景には、新製品開発における激しい競争とキャノンの経営戦略があげられる。キャノンは、独自の革新技術で製品を開発し、未開拓市場を新市場として積極的につくり出して、新たに高リスク、高利益を持つ製品を開発する。そのために新製品を投入してシェアを維持していく。このためには頻繁な新製品開発が必要となる。キャノンの1983年から1992年までに開発された新製品は年平均71であり、1カ月平均6製品が市場に投入され、これがまたキャノンの市場での強さとなってい12。

頻繁な新製品開発のためには、新製品のコンセプト立案から、要素別試作品開発（製品の要素別に試作品開発するもの）、機能別試作品開発（要素別の部品を組付けて製品の持つ機能ごとに試作品を開発するもの）、最終製品試作品開発（すべての部品を最終製品かたちで組付けるもの）、生産試作、大量生産試作の6つの段階を経る新製品開発フローのそれぞれの段階は短縮化・効率化する必要がある13。特に、試作品開発は、最終製品の試作品開発だけでなく、最終製品に至るまでに要素別、機能別に行われる試作品開発も重要な作業であり、試作品によってコスト、信頼性、デザインの面から検討され、問題があればひとつひとつ解決していく作業が行われる。このため、材料を変更したり、デザインを一部変更したり、部品の組付け位置を変更すると、再び試作品を製造する必要がでてくる。試作品の発注がたびたび繰り返されるのに対して、素早く対応してくれるN社の専業メーカーのない、新製品開発は滞ることになり、新製品開発競争にも打ち勝つことができないといえる。

キャノンは1978年（昭和53年）に、“Time Saving 1/2”（TS 1/2）と呼ばれる研究開発・生産の効率化運動を始め、新製品開発期間を半分に短縮することを試みた。これは、競争力のある独創的な製品をタイミングよく、継続的に市場に出すこ
とを狙いとして、キャノンの企業体質の一層の強化を図ったものである。この頃から、試作品の生産ネットワークとの緊密な連携が必要となり、N社もキャノンからの発注が増えてきたものと思われる。1985年（昭和60年）には、「Time Saving 1/2」運動の結果、各事業部の代表的な製品の開発期間が半分になっている。開発期間の短縮化には、キャノンの全社あわせての取り組みだけでなく、キャノンを支える試作品の生産ネットワークも寄与したものと思われる。

ちなみに、試作を終えて量産に入ると、外注先の選定は量産を受け持つ工場に権限が移り、試作品をつくっていた企業が同じ製品の量産品をつくることはあまりなく、別の中小企業になる。例えば、キャノンの複写機の工場は茨城県取手市にあり、協力企業は、茨城県、千葉県に立地しており、試作品の生産ネットワークを形成していたN社とは関連がなくなる。この背景には、実際の量産にあたっては、小回りをきかせて細かく個部品を調達する必要があることがあげられる。新製品が研究開発部門で完成しても、量産工場で効率的に大量につくるには、研究開発部門での生産試技、量産試技の段階で問題を明らかにして解決しておくことが必要である。特に、量産試技の段階では、一定の数を生産ラインで実際に流して生産し、部品調達、部品の組付け、作業者の動き、不良品の発生を検討する。研究開発部門のスタッフが取手工場のスタッフと連携して問題の解決にあたることとなる。ここで生産ラインの変更、部品調達の問題、部品をどの程度まで半完成品としておくかが生じる。これらの問題に柔軟に対応するのが、量産を担当する工場である。しかも、実際に量産が始まっても、予期せぬ問題が生じることとなり、問題をひとつひとつ解決して、生産ラインが効率的に稼働するには生産を開始してから数か月を要することもある。このため、量産工場に部品を製造する協力企業を選ぶ選定の権限がないと、量産工場では量産に適した生産ネットワークが形成できないといえる。

4 量産品の生産ネットワーク

(1) 量産品の生産ネットワークの概要

キャノンの量産品は、茨城、三重、滋賀の地方工場を中心として生産ネットワークが形成されている。量産品の生産には、多数の企業が複雑にかかっており、基本的には部品のユニット品（単純な部品を半完成品に近いかたちで組み立てたものので機構部品とも呼ばれる）による納入が中心となっている。ユニット品の組立工程の概要はインタビュー調査によれば次のとおりである。19。

① 図面にもとづく外注、内製の決定

キャノンから図面が貸与されると、ユニット品を組み立てるために、自社での組立、あるいは外注先企業への発注を行う。自ら部品を手当てして、自工場内にユニット品を組み立てる小さなラインをもうける、あるいは受注したユニット品をさらに外注にまわしてつくらせ、自分は問屋的な企業になるなどを決定する。

② ユニット組立

自社ユニット、外注ユニットからユニット品を組み立て、キャノンに納入する。
3 キャノンでの組立
キャノンでは、納入されたユニット完成品を、生産ラインで組立てる。

(2) 量産品の生産ネットワーク
キャノンの量産品生産ネットワークをみると、試作品の生産ネットワークと大きな違いがみられる。試作品では、短期間で精度の高い注文をこなせる切削・研削の比較的高い技術・技能が要求される。これに対して、量産品ではキャノンからの発注仕様に基づいて対応でき、完製品に近い製品を納入する対応が要求される。キャノンでは、量産品においてはコストにみあわない小ロットの部品製造の仕事や部品をさらに最終完成品に近いユニット品に組み立てる仕事などを、主に協力企業に発注している。協力企業では、小回りを生かしてこれらの仕事をこなすことが必要となっている。

キャノンのユニット品を製造しているH製作所（本社大田区、工場取手、事業内容板金・プレス、機械加工、従業員450人）をここで紹介しておく。1951年（昭和26年）の創業以来キャノンと取引し、キャノンが取手工場を新設するや1973年（昭和48年）にH製作所も茨城工場を建設・移転した。同社ではユニット品を製造し、キャノンの取手工場に納入している。ユニット品の組立では、茨城を中心とした約400社の外注企業から部品の加工、外注ユニットを調達している。売上の9割はキャノンである。H製作所は、キャノンのどんな要請にも対応できることを強みとし、ラインの合理化によるコスト引き下げに注力している。

この量産品の生産ネットワークでも、長期的継続的な取引関係がみられる。キャノンにとって、品質を安定的に維持し、製造コストを引き下げるためには、対応力にすぐれた協力企業の自主的な現場改善、生産コスト削減の努力が不可欠である。長期的継続的に取引することで、製造管理、品質管理の面での情報が交流でき、協力企業の自主的な現場改善、生産コスト削減が可能となる。

とはいえ、量産品の生産ネットワークが再編成の時期にあるのは事実であろう。キャノンは8割が輸出であり、これまでに円高でキャノンの収益を逼迫させる要因であった。従来から為替リスクに悩まされてきた経験を持つキャノンは、これまで1割にも満たなかった部品の海外からの調達を今後高め、3割近くあった海外生産を積極的に高める必要に迫られている。部品の調達だけでなく、ある製品のある工程の海外移管、ひいてはある製品の海外生産全面移管など、最適な生産の仕組みづくりが、キャノンでは今模索されているといえる。こうしたなかで、H製作所をはじめとする量産品の生産ネットワークも、変動を余儀なくされているといえる。

5 インプリケーション

(1) 日本における「柔軟な専門化」
これまで日本の製造業の優良なパフォーマンスを支えてきた要因のひとつとして、中小企業を中心とする部品製造業の優秀さがあげられるよう。中小企業は、自動車産
業にみられるように、ひとつひとつの企業がきわめて優秀な技術・技能を持ち、高品質（Quality）、廉価（Cost）、短納期（Delivery）の部品を製造してジャスト・イン・タイムの生産方式を支えてきた。本稿でみたキャノンの量産品の生産ネットワークも同様であり、すぐれた対応力を発揮して、高品質、廉価、短納期の製品を生産してきた。QCDに優れた力を発揮するキャノンの量産品生産ネットワークは系列取引に近く、下請け取引の色彩が濃いともいえる。

しかしここで注目されるべきは、製品開発競争の面において、キャノンを支えてきた試作品の生産ネットワークであろう。試作品の生産ネットワークは、技術・技能を強みとする中小企業が、きわめてゆるやかに結びつき、ネットワークされることで、ひとつつの試作品という目標にむかって生産する「柔軟な専門化」の生産システムが見られる。

このキャノンの試作品生産ネットワークの事例にみられる、「柔軟な専門化」の特徴をまとめてみると次のようなようになる。

①キャノンの試作品生産ネットワークの組織形態
まず、ピオリ、セールルの言う「組織形態」については、2つの点を指摘できる。第1に、大田、品川を中心とする地域に小規模企業が集中し、競争と協同の複雑な網の目により生産ネットワークが形成されている点である（ピオリ、セールルの「独立した小企業の地域的な集合体」）。京浜工業地帯に形成された生産ネットワークは、大田、品川のコミュニティを基礎としており、広く川崎まで広がっているのが、今回の事例調査から読み取れる。生産ネットワークが地域のコミュニティと一体となっていることから、経営者は地域への貢献も欠かしていない。例えば、大田区の経営者は、古くは戦前から経営者が集まって学校を創設した歴史を有しており、こうした地域への貢献は今でも変わらない21）。M精工のM氏は、住工混在の街で町工場のイメージを向上させるために矢口、下丸子町工場団体を組織して、地元の地域住民と交流会を開催したり、工場跡地を再利用した新たなモデル工場づくりを、行政の協力を得て進めている22）。

第2に、N社を核とする独立した専門企業と生産ネットワークが形成されている点である（ピオリ、セールルの「中心企業とそれに安定した関係を持つ小企業」および「独立した作業場からなる工場」）。N社の外注先の専門企業は、N社と従属した関係ではなく、N社と横につながった協力者との関係であり、技術・技能に強みを持つ専門企業としての自立性を保っているのが特徴といえる。

②キャノンの試作品生産ネットワークの特徴
ピオリ、セールルの言う「共通する特徴」については、3つの点を指摘できる。
第1に、「柔軟性プラス専門化」である。N社の協力企業の生産ネットワークは、新製品の試作品をつくるために、どんな注文にも応じられるように、専門企業に特化して互いに補いあい、情報を共有化してあらゆる製品をつくることができる柔軟な仕組みとなっている。

第2に、「参加の制限」である。N社のN氏は、生産ネットワークに参加できる
協力企業を高い専門技術を持つ企業に限っており、向上のみられない企業は発注しないことにより技術力の水準を保持している。

第3に、「競争の基準」である。N社の協力企業では、積極的に新製品を繰り返し、技術競争を協力企業の関で行われている。これがまた、技術革新へとつながり、顧客への信頼へとつながっている。

③ 結 語

本稿の結論では、キャノンの生産ネットワークからみる限り日本の中小企業は「大量生産」と「柔軟な専門化」による生産システムの両者がみられ、試作品の生産ネットワークに「柔軟な専門化」の特徴がより見いだされることである。しかししながら、この2つの生産ネットワークは、N社の協力企業にみるように、量産品の生産ネットワークにも一部組み込まれ、また他方では試作品の生産ネットワークにも一部組み込まれており、現実の生産ネットワークの形態は複雑で多面的である。

しかも、現在の不況下では、新製品の開発サイクルも長くなり試作品の仕事が減少していることから、量産品の仕事確保の姿勢も強まりつつあり、試作品の生産ネットワークは、また流動的であるのが特徴となっている。そして量産品の生産ネットワーク自体も海外展開を視野にいれて再編成されつつある。N社の試作品の生産ネットワークによる「柔軟な専門化」を支える中小企業は大量生産のネットワークも支えており、その実態は複合的で変動的であるといえる。企業の置かれている条件（技術・技能の強み、弱み）や経済的・不況（好況、不況）によって大きく左右され、中小企業は多様な生産ネットワークを形成しているといえる。

(2) ほほろびがみえる日本の「柔軟な専門化」

さて、最後に指摘しておきたいのは、日本の「柔軟な専門化」に「ほほろび」が見いだせる点である。

まず、構造的には、技術・技能を担う人の問題である。長い間の経験を積んだ技術・技能者が高齢化してきている。また、中小企業の製造現場は3K職種と呼ばれ、若い人の入職者が少なくなってしまってきており、技術・技能の継承が難しくなりつつあるのが現状である。例えば、N社では、首都圏で工業高校を終えて入社してくる若者が少なくないことから、長野県に新たな工場を建てて地方での人集めに注力している。またAO社も、宮城県に立地したのは、若者の採用が比較的容易だったためである。

次に、仕事量の減少による生産ネットワーク自身の縮小である。パブル経済崩壊後の不況下にあって、顧客からの注文が減り、仕事そのものが減少してきている。
これまでも、仕事量が安定的にあることで存続していた試作品の生産ネットワークも、新製品開発のモデル・チェンジの長期化、大企業の内製化により、ネットワークそのものがシュリンクしつつある。そこでN社では、キャノンをはじめ他のメーカーの研究開発部門に営業活動を行い受注拡大を図っている。柔軟な専門化を支える生産ネットワークが、あらゆる受注に、短期間にこたえることができたのも、
仕事が安定的にあることが前提であった。安定的に仕事があることで、生産ネットワークを支える中小企業には技術・技能も蓄積され、積極的な投資も可能であった。こうした前提そのものが変化し、生産ネットワークにはころびがみえ始めているのが懸念される。

とはいえ、キャノンは、独自の技術にこだわりを持ち、新市場に独自の製品で参入する経営戦略には変化はない。海外での生産に移管したりあるいは部品調達を海外から行うもの、新製品開発は依然として日本が中心であり、下丸子が拠点である。

このことから、N社が切削・研削の高い技術力を持つ企業の生産ネットワークで保ち、技術革新を不断に行う限りは、キャノンの高値が高価値製品をめざす製品開発においてN社およびN社の協力企業は今後とも重要な役割を果たしていくものと思われる。

［追記］本研究にあたりインタビュー取材に協力して頂いた企業の方々に深謝いたします。

[注]
1) 山之内・永易・石田訳『第二の産業形成』筑摩書房、1993年、338頁～347頁。「独立した小企業の市場的な集合体」は、一部同等の小企業により構成され、競争と相互の複雑な網の目で包まれている集合体をさし、集合体のなかで、さまざまな協力が地域的になされている。「ゆるやかな結びつきをもつ大企業の連合体」は、日本の企業グループ、戦前の財閥をさし、企業同士の株の持ち合い、役員派遣などをさしている。「中心企業とそれと安定した関係を持つ企業」および「独立した作業場からなる工場」は惑星のように下請け業者を周囲に配置した企業と独立した作業場をさしている。

2) ピオリ、セブルは、ポスト・フォーディズムをめぐる議論のなかで、新たな生産方式のモデルを提示し、多くの支持と批判を招いてきた。大量生産と柔軟な専門化という二分法による、現代の複雑で多面的な産業社会をとらえることは、安易な図式であるとの批判もあるが、ここでは大量生産と柔軟な専門化の二つの生産方式を前提として議論を進めることとする。

3) 中小企業論の立場からは、これまでか重構造論として議論されてきた。近代的な高い生産性部門と前近代的な低生産性部門が所得、労働格差をもって併存しているとされ、この両者が産業構造を相互依存的に構成しているとされてきた。また、発注企業が資本を節約して間接的に低賃金労働力を搾取し、景気変動の緩衝装置にしているという親企業、下請け企業の関係をみるかたちもある。これに対して、中小企業を前向きにとらえ、新たな視点を提供したのは、中村秀一郎や清成忠男である。中村は高度経済成長期に、中小企業の規模を越えて成長しているノーパターの企業群をみて、大企業にはなっていないが、中小企業ではないこれらを「中堅企業」と定義した。また、清成は企業間関係の変化をとらえ、従来のピラミッド型の企業間関係から、異なった専門能力を有する企業と戦略的に連携して経営資源のレベルをあげ、事業のコープを広げる情報創造型のネットワークの企業間関係に変化しつつあるとしている。筆者もこの立場に立っている。

4) キャノン株式会社『キャノン史』1987年、キャノン生産本部資材管理センターS部長へのインタビュー調査（1991年1月）による。
5) N社経営者N氏へのインタビュー調査（1991年2月）による。

6) K製作所経営者K氏へのインタビュー調査（1991年2月）による。

7) 機械工学において、切削加工（広義）は、2種類に分けられる。ひとつが、刃物による加工であり狭義の切削加工をさす。切削工具を固定して被削材を削って切り屑をだしたり、あるいは被削材を動いて切り屑をだすものである。旋盤、ボール盤、マシニングセンター、ワイヤカット放電加工機の工作機械を使用する。もうひとつが、砥粒による加工であり、これが研削加工と呼ばれる。これは、研削砥石を高速度で回転させて工作物を切削するものである。あらゆる材料を高速度で削り、表面が粗いものを細かく仕上げたり、ミクロン単位の精密な寸法をたすことが可能となる。工作機械は、万能研削盤、平面研削盤、内面研削盤を使用する。研削加工では、切削加工と比べると同じ切り屑をだすのに数倍の時間を要するので、通常は旋盤で切削した部品を、研削盤で最終的に仕上げることがおこなわれる（次図参照）。

切削加工（狭義）
旋盤、ボール盤、マシニングセンター、ワイヤカット放電加工
切削加工（広義）
工機等
研削加工
万能研削盤、平面研削盤、内面研削盤等

8) M精工経営者K氏へのインタビュー調査（1991年2月）による。

9) AO 社経営者G氏へのインタビュー調査（1991年2月）による。

10) N社経営者N氏へのインタビュー調査（1991年2月）による。

11) K製作所経営者K氏へのインタビュー調査（1991年2月）による。

12) M精工経営者K氏へのインタビュー調査（1991年2月）による。

13) 富沢木実（同職入ネッサンス）「総研研究」長銀総合研究所（1992年6月）によれば、モデリストは、イタリアに200人ほどおり、うち一流は20人といわれる。モデリストは、デザイナーのセンスをいかしながら、どの生地をつかって、どの工場で、どう熟練工を配して縫うかなどの設計を行い、どういうところに売りたいというマーケティング戦略まで受け持つ。モデリストは、衣服を生産するのに必要な職歴を経て専門能力を身につけた職人である。

14) N社経営者N氏へのインタビュー調査（1991年2月）による。

15) M精工経営者K氏へのインタビュー調査（1991年2月）による。


18) H製作所取締役M氏へのインタビュー調査（1991年2月）による。

19) H製作所取締役M氏へのインタビュー調査（1991年2月）による。

20) キャノンでは、今後3年かけて部品の輸入額を増やし94年は部品調達額のうち15％（1993年は10％）を外国製品とし、3年後には5割に高める計画である（日本経済新聞，1994年2月27日による）。また、海外生産比率は95年をめどに3割（1993年実績は25％）に引き上げる計画である（日本経済新聞，1994年2月17日による）。

21) 大田区では、昭和14年不足した若手技術者の養成を目的に、62の中工場の経営者が「大森機械工業徒弟学校」（戦後、新制の大森工業高校に）を設立している。

22) M精工経営者K氏へのインタビュー調査（1992年1月）による。

23) N社経営者N氏へのインタビュー調査（1993年4月）による。

24) キャノンでは、1993年本社を新宿から目黒の下丸子に移して製品開発を担当する部門と経営トップとの物理的距離をなくしている。経営が製品開発部門に近づき、製品開発部門とすぐ
Canon Inc., is one of the most famous precision appliance makers and originated in Ohta and Shinagawa, in the Southern District of Tokyo. As coordinator of the supply chain of middle sized and small businesses, Canon has the two different categories for coordinating the supply chain.

The first is the prototype-making supply chain, which consists of middle sized and small businesses with specialized technical skills, located in Ohta and Shinagawa. Canon and its suppliers are in direct, face-to-face contact, sharing product development information: in a none rigid, flexible relationship. Canon showed high performance in the product development competition by utilizing the prototype-making supply chain, which makes it possible to shorten the lead time of the product development and therefore enabling it to manufacture many new models.

The second is the mass production supply chain. Suppliers, mainly located in Ibaraki and Chiba Prefecture, endeavor to maintain high quality control, therefore reducing cost and frequent deliveries.

Finally, I try to exemplify the effectiveness of "Flexible Specialization" (M.J. Piore and C. F. Sable) in the prototype-making supply chain of Canon.

Key-words: The Second Industrial Divide, Flexible Specialization, Prototype-making Supply Chain