COPD 患者の運動耐容能に関与する因子

—— Shuttle Walking Test による評価——

市立秋田総合病院リハビリテーション科 1)，同 呼吸器内科 2)，
由利組合総合病院呼吸器科 3)，秋田大学医学部保健学科 4)
清川 憲孝 1) 高橋 仁美 1) 菅原 慶勇 1) 笠井 千景 1)
土橋真由美 1) 敷中 葉月 1) 加賀谷 齊 1) 本間 光信 2)
佐藤 一洋 3) 佐竹 將宏 4) 塩谷 隆信 4)

【要旨】慢性閉塞性肺疾患 (COPD) 患者の運動耐容能に、大軸四頭筋筋力が大きく関与していることが知られている。今回、COPD 患者の運動耐容能に関与する因子について、Shuttle Walking Test を SWT 用い、大軸四頭筋の最大筋力を体重で除した値である体重支持指数 (Weight-Bearing Index : WBI) 0.6 以上の群および 0.6 未満の群に分け、検討した。その結果、WBI 0.6 以上の群では SWT と最高酸素摂取量 (Peak VO2)、WBI 0.6 未満の群では SWT と大軸四頭筋筋力が最も強く相関した。この結果から、COPD 患者における運動処方として、WBI 0.6 未満では大軸四頭筋筋力強化、WBI 0.6 以上では酸素摂取量増加を目的とした運動療法が効果的である可能性が示唆された。

Key words：運動耐容能 —— 大軸四頭筋筋力 —— 体重支持指数 —— Shuttle Walking Test ——
最高酸素摂取量

はじめに

近年、COPD 患者の運動耐容能を制限する因子として、大軸四頭筋筋力の関与が注目されている。われわれは、6 分間歩行距離 (6MD) テストで評価した運動耐容能に対して、大軸四頭筋の最大筋力を体重で除した値である WBI が大きく影響を与えることを報告した 1)。

WBI について黄川 2) は、重力に抗する全ての荷重運動は WBI に従い、WBI は年齢、性別、人種に左右されない絶対数価である。一般的な活動をする人では 0.6 〜 0.8 の範囲にあり、WBI 0.6 は立ち座りや歩行などの日常生活を保障する最低目標であると報告している。われわれの COPD 患者を対象とした研究 1) においては、大軸四頭筋の筋力強化を含めた外来リハビリテーションを 2 カ月以上継続した症例の WBI が平均 421 m で、WBI が平均 0.6 であった。

今回は、COPD 患者を対象に、WBI 0.6 以上の群と未満の群に分けたとき、運動耐容能に影響を及ぼす因子に違いがあるかを明らかにするため、6MD より心肺負荷が高い、患者の最大運動能力を評価するより客観的なウォーキングテストであるとされる SWT 3) 〜 5) を行い、それぞれの群において SWT に関与する因子を検討した。

対象と方法

1. 対 象

対象は、市立秋田総合病院呼吸リハビリテーション外来に通院している COPD 患者 24 例である。病状が安定し、インフォームドコンセントの得られた患者を対象とした。今回の研究では、酸素摂取量を測定するにあたってフェースマスクを使用する必要上、酸素吸入療法を施行している患者を除外した。対象患者に対
表1 患者背景

<table>
<thead>
<tr>
<th></th>
<th>WBI 0.6 以上の群 (n = 16)</th>
<th>WBI 0.6 未満の群 (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>年齢（歳）</td>
<td>72 ± 6</td>
<td>75 ± 6</td>
</tr>
<tr>
<td>身長（cm）</td>
<td>160.2 ± 4.0</td>
<td>159.4 ± 8.1</td>
</tr>
<tr>
<td>体重（kg）</td>
<td>53.1 ± 11.2</td>
<td>56.5 ± 11.9</td>
</tr>
<tr>
<td>BMI</td>
<td>20.8 ± 4.4</td>
<td>22.2 ± 4.7</td>
</tr>
<tr>
<td>肺機能 VC (ml)</td>
<td>3315 ± 750</td>
<td>2876 ± 553</td>
</tr>
<tr>
<td>% VC (%)</td>
<td>105.4 ± 23.6</td>
<td>96.9 ± 14.5</td>
</tr>
<tr>
<td>FEV1.0 (ml)</td>
<td>1650 ± 620</td>
<td>1149 ± 553</td>
</tr>
<tr>
<td>% FEV1.0 (%)</td>
<td>65.7 ± 25.7</td>
<td>50.5 ± 23.4</td>
</tr>
<tr>
<td>FRC (ml)</td>
<td>4366 ± 903</td>
<td>4139 ± 994</td>
</tr>
<tr>
<td>RV/TLC (%)</td>
<td>46.5 ± 8.5</td>
<td>51.7 ± 10.6</td>
</tr>
<tr>
<td>呼吸筋力 Pimax (cmH₂O)</td>
<td>76.4 ± 24.4</td>
<td>58.2 ± 32.4</td>
</tr>
<tr>
<td>PEmax (cmH₂O)</td>
<td>111.4 ± 31.7</td>
<td>99.4 ± 36.4</td>
</tr>
<tr>
<td>大腿四頭筋筋力 (kg)</td>
<td>36.4 ± 9.6</td>
<td>27.1 ± 7.5</td>
</tr>
<tr>
<td>WBI (kg/kg)</td>
<td>0.68 ± 0.11</td>
<td>0.48 ± 0.07</td>
</tr>
<tr>
<td>SWT (m)</td>
<td>411.3 ± 115.2</td>
<td>227.5 ± 64.1</td>
</tr>
<tr>
<td>Peak VO₂ (ml/min/kg)</td>
<td>18.0 ± 4.1</td>
<td>14.2 ± 2.5</td>
</tr>
<tr>
<td>Peak HR (beats/min)</td>
<td>117.7 ± 21.5</td>
<td>113.4 ± 11.0</td>
</tr>
<tr>
<td>Borg scale</td>
<td>5.4 ± 2.3</td>
<td>5.9 ± 1.7</td>
</tr>
</tbody>
</table>

各測定値：平均値 ± 標準偏差，*：p < 0.01，***：p < 0.05

BMI：body mass index VC：vital capacity FEV1.0：forced expiratory volume in one second FRC：functional residual capacity RV：residual volume TLC：total lung capacity Pimax：maximum inspiratory mouth pressure PEmax：maximum expiratory mouth pressure WBI：weight bearing index SWT：shuttle walking test

してWBIを測定し、WBI 0.6 以上の群16例およびWBI 0.6 未満の群8例に分類した。それぞれの群の患者背景を表1に示す。

2. 呼吸リハビリテーションプログラム

当院のプログラムは、呼吸介助、呼吸体操、呼吸筋の筋力強化、腹式呼吸＋口すぼめ呼吸、上・下肢筋の筋力強化、步行練習、ADL指導および患者教育で構成されている。下肢の筋力強化は、椅子座位で重錠バーディを足関節部に負荷して、等張性収縮運動を行わせている。片足20回を1セットとして、2セット/日程度から開始している。この際の呼吸法は、口すぼめ呼吸と腹式呼吸を行い、足部挙上時には呼気にて間調させて行うように指導している。步行練習は、1日2回、呼吸法を取り入れて15分程度歩くことから開始して、30分以上を目処としている。呼吸法は、口すぼめ呼吸と腹式呼吸を行ないながら4歩で嘘をして、2歩で吸うというように呼気と吸気の比が2:1、または3:1となるようにする。重症な症例ではインターバルを入れて、歩行と休息を交互に繰り返して行わせている。

3. 測定方法および測定機器

肺機能は、チェスト社製CHESTAC-25 PART II EXを使用し、肺活量（VC）、％肺活量（％VC）、1回換気量（TV）、努力性肺活量（FVC）、1秒量（FEV1.0）、1秒率（FEV1.0％）、％1秒量（％FEV1.0）、全肺活量（TLC）、機能的残気量（FRC）、残気量（RV）、残気率（RV/TLC）、肺拡散能力（DLCO）を測定した。

呼吸筋力は、チェストMI社製VITALOAPER KH-101を使用し、全肺気量位からの最大呼気圧、残気量位からの最大吸気圧を、それぞれ2回測定し、最大値を最大呼気口腔内圧（PEmax）、最大吸気口腔内圧（PImax）とした。

大腿四頭筋筋力およびWBIは、OG技研社製HYDROMUSCULATOR GT-160を使用し、膝関節屈曲70度、アイソメトリックモードでの最大筋力を左右とともに測定し、その平均値を採用した。

SWTは、開発者であるSinghら35の方法に準じて測定し、最大歩行距離、テスト中の最高心拍数（Peak HR）およびテスト終了直後のBorg scaleを測定した。最大歩行距離は、増幅するスピードについていければなくなった時点までの歩行距離とした。

Peak VO₂については、コルテックス社製Meta Max 3Bを使用して、SWT中に測定し、その最高値を
表 2 COPD 患者全 24 例の相関行列および重回帰方程式

<table>
<thead>
<tr>
<th>相関行列</th>
<th>SWT</th>
<th>Peak VO₂</th>
<th>肌力</th>
<th>Peak HR</th>
<th>FVC</th>
<th>年齢</th>
<th>VC</th>
<th>RV/TLC</th>
<th>Plimax (√(x) 変換)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWT</td>
<td>0.753</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak VO₂</td>
<td>0.565</td>
<td>0.325</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大腿四頭筋筋力</td>
<td>0.332</td>
<td>0.669</td>
<td>-0.089</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak HR</td>
<td>0.473</td>
<td>0.231</td>
<td>0.718</td>
<td>0.090</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVC</td>
<td>-0.465</td>
<td>-0.262</td>
<td>-0.555</td>
<td>-0.064</td>
<td>-0.458</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>年齢</td>
<td>0.448</td>
<td>0.237</td>
<td>0.769</td>
<td>0.043</td>
<td>0.985</td>
<td>-0.452</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC</td>
<td>-0.360</td>
<td>-0.350</td>
<td>-0.596</td>
<td>-0.049</td>
<td>-0.585</td>
<td>0.441</td>
<td>-0.595</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RV/TLC</td>
<td>-0.352</td>
<td>0.186</td>
<td>0.677</td>
<td>-0.010</td>
<td>0.505</td>
<td>-0.461</td>
<td>0.529</td>
<td>-0.732</td>
<td></td>
</tr>
<tr>
<td>Plimax (√(x) 変換)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

重回帰方程式

\[
Y = 21.068 \cdot X_1 + 4.849 \cdot X_2 - 164.549
\]
\[
R^2 = 0.651, \ p < 0.0001
\]

\[Y = SWT, X_1 = Peak VO₂, X_2 = 大腿四頭筋筋力\]

標準回帰係数

\[X_1 = 0.637\]

\[X_2 = 0.358\]

Peak VO₂ とした。これは、「負荷強度が増加しても酸素摂取量が増加しない (leveling off) 状態の酸素摂取量」と定義される最大酸素摂取量 (VO₂ max) とは、生理学的に異なる値であるが、7 割以上の患者で酸素摂取量が leveling off に達していることが確認され、Peak iHR も年齢から予測される最大心拍数の 78% (68 93%) に達していたため、VO₂ max にはほぼ近い値であると考えられた。なお、breath-by-breath 法によって得られたデータは、そのままではばらつきが大きいため平滑化処理が必要となる。今回は一呼吸毎に出力されるデータを、まず 5 秒で時間平均し、テスト開始時間を確認した後で、20 秒間隔での平均値を求めた。

4. 分析方法

SWT で評価した運動耐能の関与する因子を検討するため、相関分析および重回帰分析を行った。なお、これらの分析を行うにあたっては、データの分布について正規性を検定し、正規分布していないデータについて、log x 変換あるいは√\(x\) 変換し、分布の正規性を確認したうえで処理した。

相関分析を行うにあたっては、事前に主因子法による因子分析を行い、あらかじめ SWT に影響を及ぼすと予想される変数を絞り込んだ。その結果、全 24 例については、TLC、FRC、RV など残気量を反映する因子、FEV₁₉₉ (log x 変換)、FEV₁₉₉ %、% FEV₁₉₉ など、気道閉塞を示す因子などは、運動耐能とは異なったグループに属した因子であり除外した。なお、WBI 値は群間を分ける際にのみ用い、相関分析および重回帰分析には大腿四頭筋筋力との相関が高いことからも変数として取り入れなかった。

2 群間の対象患者の基礎データの比較には、対応のない t 検定を用い、p < 0.05 を有意差ありとした。

結果

1. WBI 0.6 以上の群と 0.6 未満の群との比較

身長、体重などの一般生体特性では、両群間に有意差はみられなかった。肺機能については、WBI 0.6 以上の群に対して 0.6 未満の群で FEV₁₉₉ の低下や RV/TLC の増加などがみられ、重症度が高い傾向を示したが、有意差は認められなかった。大腿四頭筋筋力および WBI については、これらの平均値と標準偏差が、順に WBI 0.6 以上の群が 36.4 ± 9.6 kg、0.68 ± 0.11、WBI 0.6 未満の群が 27.1 ± 7.5 kg、0.48 ± 0.07 で、どちらにみても有意差が認められた (p = 0.0254, p < 0.0001)。

SWT における最大歩行距離は、WBI 0.6 以上の群で 411.3 ± 115.2 m、WBI 0.6 未満の群で 227.5 ± 64.1
表3 WBI 0.6以上の群の相関行列および重回帰方程式

相関行列

<table>
<thead>
<tr>
<th></th>
<th>SWT</th>
<th>Peak VO₂</th>
<th>Peak HR</th>
<th>身長</th>
<th>年齢</th>
<th>FVC</th>
<th>Borg</th>
<th>VC</th>
<th>筋力</th>
<th>PImax</th>
<th>体重</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWT</td>
<td>0.724</td>
<td></td>
</tr>
<tr>
<td>Peak VO₂</td>
<td>0.633</td>
<td>0.817</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak HR</td>
<td>0.533</td>
<td>0.462</td>
<td>0.531</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>身長</td>
<td>−0.473</td>
<td>−0.180</td>
<td>−0.145</td>
<td>−0.449</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>年齢</td>
<td>0.451</td>
<td>0.104</td>
<td>0.021</td>
<td>0.067</td>
<td>−0.322</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVC</td>
<td>0.447</td>
<td>0.422</td>
<td>0.434</td>
<td>0.406</td>
<td>−0.300</td>
<td>0.154</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borg scale</td>
<td>0.432</td>
<td>0.129</td>
<td>−0.012</td>
<td>0.031</td>
<td>−0.289</td>
<td>0.986</td>
<td>0.125</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC</td>
<td>0.409</td>
<td>0.081</td>
<td>−0.210</td>
<td>−0.080</td>
<td>−0.393</td>
<td>0.666</td>
<td>0.198</td>
<td>0.739</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大腿四頭筋筋力</td>
<td>0.372</td>
<td>−0.037</td>
<td>−0.141</td>
<td>−0.326</td>
<td>−0.216</td>
<td>0.330</td>
<td>−0.130</td>
<td>0.362</td>
<td>0.663</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PImax</td>
<td>0.367</td>
<td>−0.139</td>
<td>−0.213</td>
<td>0.030</td>
<td>−0.191</td>
<td>0.479</td>
<td>−0.008</td>
<td>0.495</td>
<td>0.740</td>
<td>0.719</td>
<td></td>
</tr>
</tbody>
</table>

重回帰方程式

\[Y = 22.148 \times X_1 - 211.456 \times X_2 - 778.565 \]

\[R^2 = 0.709, \ p = 0.0001 \]

\[Y = \text{SWT}, \ X_1 = \text{Peak VO}_2, \ X_2 = \text{体重（}^{1/2}x\text{変換)} \]

標準回帰係数

\[X_1 = 0.791 \]

\[X_2 = 0.477 \]

表4 WBI 0.6未満の群の相関行列および重回帰方程式

相関行列

<table>
<thead>
<tr>
<th></th>
<th>SWT</th>
<th>筋力</th>
<th>Peak VO₂</th>
<th>FVC</th>
<th>VC</th>
<th>体重</th>
<th>Peak HR</th>
<th>BMI</th>
<th>PEmax</th>
<th>年齢</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWT</td>
<td>0.728</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大腿四頭筋筋力</td>
<td>0.526</td>
<td>0.587</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak VO₂</td>
<td>0.501</td>
<td>0.827</td>
<td>0.305</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVC</td>
<td>0.472</td>
<td>0.854</td>
<td>0.295</td>
<td>0.988</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC</td>
<td>0.462</td>
<td>0.849</td>
<td>0.279</td>
<td>0.902</td>
<td>0.924</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>体重（}^{1/2}x\text{変換）</td>
<td>0.384</td>
<td>0.245</td>
<td>0.437</td>
<td>0.356</td>
<td>0.285</td>
<td>0.043</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak HR</td>
<td>0.372</td>
<td>0.825</td>
<td>0.388</td>
<td>0.806</td>
<td>0.855</td>
<td>0.893</td>
<td>0.234</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>0.365</td>
<td>0.555</td>
<td>0.034</td>
<td>0.577</td>
<td>0.626</td>
<td>0.672</td>
<td>−0.327</td>
<td>0.393</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEmax</td>
<td>−0.354</td>
<td>−0.768</td>
<td>−0.213</td>
<td>−0.669</td>
<td>−0.753</td>
<td>−0.806</td>
<td>0.146</td>
<td>−0.729</td>
<td>−0.830</td>
<td></td>
</tr>
</tbody>
</table>

重回帰方程式

\[Y = 8.451 \times X + 11.292 \]

\[R^2 = 0.462, \ p = 0.0263 \]

\[Y = \text{SWT}, \ X = \text{大脛四頭筋筋力} \]

標準回帰係数

\[X = 0.728 \]
m と有意差を認めた（p = 0.0004）。SWT 中の Peak \(\text{VO}_2 \) は、WBI 0.6 以上の群で 18.0 ± 4.1 ml/min/kg、WBI 0.6 未満の群で 14.2 ± 2.5 ml/min/kg と有意差が認められたが（p = 0.0227）、Peak HR および Borg scale には有意差がみられなかった（表 1）。

2. 相関分析

COPD 患者全 24 例について、主因子法による因子分析を行い SWT に対して影響を及ぼす因子を絡み込んでいた結果、Peak \(\text{VO}_2 \)、大腿四頭筋筋力、Peak HR、FVC、年齢、VC、RV/TLC、Fmax (\(\sqrt{\text{V} \times \text{V}} \) 変換) が選出され、それらと SWT との相関係数はそれぞれ 0.753、0.565、0.532、0.473、0.465、0.448、0.360、0.352であった（表 2）、WBI 0.6 以上の群に関しては、全 24 で検定したときに相関同様、SWT と Peak \(\text{VO}_2 \)、Peak HR との相関が強く、係数はそれぞれ 0.724、0.633であった（表 3）、また、WBI 0.6 未満と日常生活を送るうえでの下肢筋力が不十分な症例に関しては、SWT と大腿四頭筋筋力との相関係数 0.728 と最も強く相関していた（表 4）。

3. 重回帰分析

COPD 患者全 24 例についての検討は、目的変数を SWT、説明変数を Peak \(\text{VO}_2 \)、大腿四頭筋筋力、Peak HR、FVC、年齢、RV/TLC、Fmax (\(\sqrt{\text{V} \times \text{V}} \) 変換) とした、その結果、Peak \(\text{VO}_2 \) と大腿四頭筋筋力が回帰有意（\(R^2 = 0.651, p < 0.0001 \)）であり、変数減少法においても同様の回帰式が得られた（表 2）、同様に、WBI 0.6 以上の群に関しては、SWT に対して Peak \(\text{VO}_2 \)、体重 (\(\sqrt{\text{V} \times \text{V}} \) 変換) が回帰有意（\(R^2 = 0.709, p = 0.0001 \））であり（表 3）、WBI 0.6 未満の群に関しては、大腿四頭筋筋力のみが回帰（\(R^2 = 0.462, p = 0.0263 \)）された（表 4）。

考察

Gosselink ら 11 は、COPD 患者において運動耐容能に影響を与える因子を検討した結果、6MD および \(\text{VO}_2 \) max とともに大腿四頭筋筋力と強く相関し、ステップワイヤー回帰分析でも 6MD および \(\text{VO}_2 \) max に共通して大腿四頭筋筋力が選択されたと報告してい る。本邦でも小川ら 12 が COPD 患者の 6MD および \(\text{VO}_2 \) max に大腿四頭筋筋力が深く関与していることを示しているほか、運動耐容能に対する大腿四頭筋筋力の強い関連性が注目されている。今回のわれわれのフィールドウォーキングテストとして SWT を使用し、また、SWT 中の Peak \(\text{VO}_2 \) を測定し検討した結果では、やはり Peak \(\text{VO}_2 \) および大腿四頭筋筋力は SWT と強く相関していた。さらに、日常生活を送るうえでの最低目標であるとされる WBI 0.6 を基準に、WBI 0.6 以上の群と WBI 0.6 未満の群の 2 群に分けたとき、運動耐容能に影響を及ぼす因子に違いがあるかを明ら かにするため、それぞれに対して SWT に関与する因 子を検討した結果、WBI 0.6 以上の群では SWT と Peak \(\text{VO}_2 \) との相関が強く、WBI 0.6 未満の群では SWT と大腿四頭筋筋力との相関が強いことが明らかになった。

今回の結果から、COPD 患者に対する運動処方として、運動耐容能の改善を図るためには、WBI 0.6 未満と筋力的な視点だけでみても日常生活上で何らかの支障をきたしている症例については、まず筋力の強 化が優先されると考えられた。COPD 患者の筋力低下に関しては、日常生活で使用される上肢筋よりも下肢筋で明らかで、大腿四頭筋は同年代の対照者と比較して 20 ～ 30 % 低下している 11）といわれている。加 えて、deconditioning と低酸素血症による筋量の低下 や有酸素代謝能の低下など骨格筋の機能障害も報告されている 13）。しかし、Simpson ら 14）は重度の COPD 患者に 8 週間の筋力トレーニングを行い、対 照群と比較しても筋力強化群では 16 ～ 40 % の筋力増 強と全身持久力の改善が得られたと報告しており、トレーニングによる筋力増強は十分に期待される。われ われ 15）も、発症症候群が進行している症例では、運動療法として単に歩行を行うだけでなく、大腿四頭筋 の筋力強化を併用するかより効果的と考えており、前記した下肢の筋力強化法をプログラムに取り入れることで、筋力の改善を得ている。

一方、WBI が 0.6 以上と日常生活を送るうえでの筋 力が比較的保たれているような症例では、SWT と Peak \(\text{VO}_2 \) とが強く相関していた。したがって、これ らの症例に対しては、平地歩行や階段昇降、反復起立 動作や体幹前屈動作などの体操、トレッドミルや自転車エルゴメーターなど酸素摂取量増加を目的とした運動療法が効果的であると考えられた。西本ら 16）は、リラクセーション、腹式呼吸、口ずませ呼吸、ADL 指導を行った基礎訓練群に対して、基礎訓練の後に自転車エルゴメーターによる積極的な運動訓練を行った群では、2 メロ月後に運動負荷検査において最大負荷 量が増大し、定常運動負荷検査において \(\text{VO}_2 \) の有意な変化はなかったものの、VE、HR、Borg scale がそれぞれ有意に低下したと報告している。また、COPD 患者における運動療法の効果は多面的で、肺機能の変
化が認められなくても、酸素運搬や骨格筋での酸素利用効率が改善し、運動能を改善させると考えられている（17、19）。

一般に加齢に伴って筋肉は萎縮し、筋力は低下し、それに加えてCOPD患者においては、呼吸困難感によって日常生活では非活動的になり、deconditioningを招いている。こうしたCOPD患者の運動耐容能および大腿四頭筋筋力の低下は明らかであり、日常生活に何らかの支障を来している例も少なくない。今回、我々の研究から、このような患者に対する大腿四頭筋の筋力強化の重要性が改めて確認され、その目標値はWBIの0.6以上であることが示唆された。そして、日常生活上、筋力がある程度障害された段階では、歩行や体操、トレッドミル、自転車エルゴメータなどの運動療法による効果が期待されると考えられた。

今回の検討では、フェースマスクを使用して酸素摂取量の測定を行ったため、酸素吸入療法を施行している症例は除外している。今後は、酸素吸入療法を施行している症例についても、その身体特性に適した運動処方を行えるように、運動耐容能に関与する因子を検討する必要があると考えられた。

ま と め

1. COPD患者を対象に、WBIの0.6を基準として0.6以上の群および0.6未満の群を2群に分け、SWTを用いて運動耐容能に関与する因子について検討した。

2. WBI0.6以上の群ではPeakVO₂、WBI0.6未満の群では大腿四頭筋筋力が影響力の大きい因子としてそれぞれ検出された。

3. COPD患者に対する運動処方として、WBI0.6未満の群ではまず大腿四頭筋の筋力強化が優先され、WBI0.6以上の群では酸素摂取量の増加を目的とした運動療法が効果的であると考えられた。

謝辞 稿を終えるにあたり、統計学的解析にご指導いただきました元東京大学物療内科高橋敏正先生に深謝いたします。

Factors influencing exercise tolerance in patients with COPD
— Evaluation by Shuttle Walking Test —
Noritaka Kiyokawa1, Hitomi Takahashi1, Keiyu Sugawara1, Chikage Kasai1, Mayumi Dobishi2, Hazuki Shikinaka1, Hitoshi Kagaya1, Mitsunobu Honma1, Kazuhiro Satou1, Masahiro Satake1, Takenobu Shiroya1

1) Department of Rehabilitation Medicine, Akita City Hospital, 2) Department of Respiratory Medicine, Akita City Hospital,