特集・法規制・制度と医療のイノベーション

医療に対する社会的価値判断
～何を保険診療で支払っていくべきか？

後藤 励*

1. 医療技術評価の必要性

先進国では、経済全体での保健医療分野の占める割合が年々増加している。表1は、GDP（国内総生産）に対する総保健医療支出1の増加の推移を示している。この40年の間、保健医療の経済全体での占める割合が倍増している国がほとんどである。

医療費の増加の原因を探ることは、現在に至るまで医療経済学の大きな研究テーマの一つである。これまでの研究によると、高齢化や医療制度の違いなどの影響も無視できないものの「医療技術の発展」の要因の影響が最も大きいのではないかとされている[1]。

もちろん、医療技術の発展が人々の健康への需要を満たし、健康改善をもたらしているのであればこの医療費の増加は社会的に望ましい。しかし医療の場合、次の二つの点から医療費の増加が社会的に望ましくない場合があり得る。第一に、医師が行う治療が実際には人々の健康改善に効果がない場合である。第二に、医療費財源の多くを占める税や社会保険料といった公的資金の使われ方が非効率になる場合である。日進月歩の発展を遂げる医療技術について評価し、公的な医療サービスで賄うかどうかを判断するのがHTA（Health Technology Assessment：医療技術評価）である。このうち、治療効果の評価により第一の問題を、費用効果の評価により第二の問題を防止することが求められる。

1.1 EBM：根拠に基づいた医療

一般の人々は自分にとって何が望ましい医療サービスかを正確に決めることは非常に難しい、実際には医療従事者、特に医師が治療決定に与える影響はとても大きい。しかし、医師が行っている治療が本当に効果的かどうかを評価することは、1980年代までは一般的でなかった。

表1．保健医療支出の対GDP比の推移（％）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>カナダ</td>
<td>6.9</td>
<td>7.0</td>
<td>8.9</td>
<td>8.8</td>
<td>11.4</td>
</tr>
<tr>
<td>フランス</td>
<td>5.4</td>
<td>7.0</td>
<td>8.4</td>
<td>10.1</td>
<td>11.7</td>
</tr>
<tr>
<td>ドイツ</td>
<td>6.0</td>
<td>8.4</td>
<td>8.3</td>
<td>10.4</td>
<td>11.5</td>
</tr>
<tr>
<td>イタリア</td>
<td>7.7</td>
<td>7.9</td>
<td>9.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>日本</td>
<td>4.4</td>
<td>6.4</td>
<td>5.8</td>
<td>7.6</td>
<td>9.6</td>
</tr>
<tr>
<td>イギリス</td>
<td>4.5</td>
<td>5.6</td>
<td>5.8</td>
<td>7.0</td>
<td>9.6</td>
</tr>
<tr>
<td>アメリカ</td>
<td>7.1</td>
<td>9.0</td>
<td>12.4</td>
<td>13.7</td>
<td>17.7</td>
</tr>
</tbody>
</table>

出所：OECD Health Data 2014より筆者作成

1) 総保健医療支出（Total Health Expenditure：THE）とは、OECD（経済協力開発機構）が諸外国の保健医療サービスにかかっている費用を比較するために作成した指標である。GDP統計のもとになっている国民経済計算の考え方を沿って、保健医療部門に対してどのようなモノやサービスが生産され、誰がその費用を払い、誰に給与や配当などの形で分配されているかが明確となる。「医療費」の指標の一つであるが、厚生労働省が毎年発表する「国民医療費」に比べて、対象となるモノやサービスの範囲は広い。

* Rei GOTO
京都大学 白骨センター・経済学研究科 特定准教授
〒606-8501 京都市左京区吉田本町
京都大学経済学研究科（勤務先）
goto.rei.7w@kyoto-u.ac.jp

Associate Professor
Hakubi Center of Advanced Research, Kyoto University
Graduate School of Economics, Kyoto University
Yoshida, Sakyo, Kyoto 606-8501, Japan (office)

--- 55 ---
た。20世紀半ば、生物学的医学の発展によって、抗生物質など治療を可能にするような薬剤の開発や、細胞生物学的な病態の解明などが現実のものとなった。診断や治療の選択は専門家の裁量の範囲内という、医師の選択の自主性（Physicians' autonomy）が大仕事され、それぞれの医師の経験や直感が重視された[2]。

現代の疾患の中心は慢性疾患であり、治療の効果を判定するのに数年の歳月が必要となることもある。臨床データの蓄積と、疫学・統計学の発達によって、それまで無批判に行われてきた治療の中にも効果がなさそうなものも少なくないことが分かってきた。また、効果判定の研究自体に費用と時間がかかるため、はっきり効果が分かっていない治療も多かった。

1990年代になって、治療成績を出来るだけ科学的に検証し、その結果に基づいて患者の治療選択を行うというEvidence Based Medicine（EBM: 根拠に基づいた医療）という考え方が確立した[3]。医師は臨床研究の結果を集め、それらを組み合わせて合理的に判断することが求められるようになってきた。

1.2 HTA（医療技術評価）の導入と発展

表2は、先進諸国の総保健医療支出の財源割合を示したものである。アメリカを除けば、医療費の7〜8割が税や社会保険による公共支出で賄われている。しかし、もっとも民間保険の割合が大きいアメリカでも、約半分の保健医療支出は公共支出によって賄われている。高齢者のためのメディケア、低所得者のためのメディケア、退役軍人のための医療保障制度などがこれになзал。

保健医療支出のためには公共のお金を使い、その額が年々増加している現在では、より多くの負担を社会的に求めるために、公共支出が費用に見合わた価値を上げていること（value for money）をきっちりした形で示す必要性が出てきた。上記のEBMはあくまで、個々の患者に対する治療選択を改善する目的で始まったが、徐々に社会的にどのような治療を優先させるべきかという問題がより重視されるようになっている。しかし、社会的な資源配分を取り扱うため、医学的な分析だけではなく、経済学、倫理学、社会学など様々な側面から医療技術の価値を評価する必要性が指摘されるようになった。また、医学的な分析であれば医学の専門職団体が中心となって行うことができるが、医療技術の費用やそのほかの社会的な影響を考慮するのであれば、患者、企業、納税者、など様々な関係者の利害を調整する必要がある。このような医学的な効果のみならず、費用やそのほか様々な側面から総合的に医療技術を評価し、医療政策の意思決定を助ける分野として、医療技術評価（HTA）が近年発展してきている[4]。

例えばイギリスでは、1999年にNICE（National Institute for Health and Care Excellence）という国の組織が設立された。全国民をカバーし税金で賄う医療保障制度であるNHS（National Health Service）における臨床効果の改善と資源の効率的な使用を促進するために、個別の医療技術の評価や疾患ごとの臨床ガイドララインの開発などを行っている。NICEの特徴は、当初から医療技術の評価を行う際に、経済評価を重視してきた点にある。

したがってHTAは、医療技術の健康に対する効果のみを評価するわけでもなく、費用効果のみを考慮するわけではない。しかし、一貫性のある政策決定を行うためには、医療技術の評価方法をある程度統一する必要がある。健康に対する効果を評価するEBMと経済的な評価を行う費用効果分析については、各国で方法論の取捨選択が行われ、研究方法のガイドライン化が進んでいる。以下でも例を挙げるが、方法論の取捨選択は、バイアスの少ない方法を選ぶと
言った科学的な選択だけではない。この傾向は
疫学的な方法論で統一されている EBM より
HTA の方に強く、一つの方法論を選ぶこと自体
何からの価値判断を行っているという側面があ
る。さらに、費用効果以外の医療技術の持つ社
会的に影響をどのように考慮するかについて
は、積極的に価値判断を行う以前の、問題提起
と利害関係者の間の調整が進められているとい
う段階の国が多い。

2. HTA（医療技術評価）の概要

現在、日本でも薬品や医療機器などを健康
保険に導入するかどうかの決定を行う中央社会
保険医療協議会（中保）において、医療技術
の費用効果分析の導入に関する議論が行われて
いる。しかし、医療技術評価の対象は新規技術
に限られるわけではない。現在行われている技
術が効率的に健康を改善しているかどうかは自
明ではなく、本来 HTA の対象は新旧問わずす
べての医療技術が対象となる [5] とされる。とはいって
も、现存のすべての医療技術について、効果に
関する臨床的な研究を行うことは不可能に近
い。実際のところ、多くの国では、HTA の対象
を新規技術に限定している。したがって、HTA
の対象を新規技術に限定しているということ
は、既存技術はそれ以前のものに比べて費用効
果が高いということを暗黙の前提としていると
もいえる。

それでは、新技術が既存技術に比べてどの
程度費用効果に優れているかを検討するとし
よう。新技術は既存技術との効果と費用の差の大
きさによって図1のように四つの場合に分けら
れる。実際には、新技術が既存技術に比べて効
果が低い第 2、3 象限に入る場合（D, E のよう
な場合）、そもそも開発段階で断念がされている
ことが多いだろう。第 2 象限に入る場合は、
新技術の方が費用も高く効果も低いため、保険
で償還されることはないだろう。一方、第 3 象
限の場合は今後問題になる可能性もある。新技
術と既存技術の比較ではなく、現在の技術と一
世代前の技術の比較を考えてみよう。一世代古
い技術の方が現在の技術と比べて、図1のE の
ように少し効果に劣るが、費用はかなり安い場
合があり得る。効果が少し減っても医療費を削
減することを重視するのであれば、一世代前の
医療技術を甘受することになる。現状
で、このような選択が問題となっている国はな
いが、医療費の増大が今よりさらに深刻になっ
た場合議論を呼ぶことになる可能性はある。

新技術が第4 象限に入る場合、つまり新技術
の方が既存技術に比べて効果が高く、費用は安
くてすむような技術 C については、新技術を採
用することに異論は少ないだろう。この分類に入
る医療技術ばかりであれば、新技術は常に一人
あたりの医療費を削減していく。新技術が第 4
象限に入るものばかりであれば、医療費の増大

図1. 医療技術の費用効果分析

NII-Electronic Library Service
の原因は、技術発展よりも医療サービスを上げる可能性の高い高齢者の増大といった要素が大きくなるだろう。

実際に、どのくらいの技術がこのカテゴリーに入るのだろうか？アメシカでの医療の経済評価研究のデータベースをまとめた研究によると、費用削減的技術は全体の2割程度でしかない [6]2）。医療技術の経済評価で最も問題になるのは、残り8割の効果も費用も高い技術である。このことは、医療技術の進歩の結果、健康改善に伴って一人あたりの医療費の増大する可能性が高いことを意味している。また、医療技術の進歩が医療費を削減すると期待されることも多いが、その可能性は部分的にありえるが全体的には小さい。実際には医療技術の進歩は、医療費の増大と健康改善の間のトレードオフを突きつける。特に医療費の8割以上を「みんなのお金」で賄っている日本では、「社会として医療費の増大と健康改善のバランスをどう取るか」という問題に直面する。

このような問題に、完全に客観的な結論を出することはほぼ不可能である。図2のようにHTAのプロセスは、医療技術の費用効果の「分析」(Assessment)、分析結果の解釈を行い倫理的・社会的な影響の加重を行い「評価」(Appraisal)、政策上の「決定」(Decision)の3つの段階に分かれている。分析段階では、科学的に正しい方法で分析が行われているかについての科学的判断が優先であるが、評価・決定の段階に進むにつれて、社会的な価値判断の重要性が増していく。以下では、それぞれの段階でHTAを進める際にこれまで問題になってきた社会的価値に関する議論について概説する。

3. 費用効果分析の方法論と社会的価値観
「分析」についての方法論の決定の段階でも、医療についての社会的価値観が問題となることがある。重要なことは、表層的には価値観について議論を行っていない場合でも、ある方法を選びでその方法論が暗黙のうちに想定している価値観を採用してしまうという点である。

3.1 効果指標の選定
古くから医療技術の効果指標として重視されてきたのが、死亡率減少や生存年延長である。これらは、あくまで測定が簡単であるし、感染症のように短期間で死に至る疾病が中心で、特に乳幼児死亡に対する影響が大きかった時代には、死亡率を下げる方法を伸ばすことが医療・公衆衛生の最大の目的であった。

しかし、慢性疾患が中心となって高血圧や薬

2) 例としては、幼児に対するヘモフィルス・インフルエンザ菌B型：Hibに対するワクチン接種や、60-64歳の人に対して一度だけ行う内視鏡大腸がん検診などが挙げられている。
尿病などの生活習慣病の管理を行い、将来の心臓病や脳血管疾患を予防することが重要になった。高血圧や糖尿病の治療効果の指標として、例えば10年間の心筋梗塞や脳梗塞と言った心・脳血管疾患の発生率も臨床研究上の重要な指標となっている。もちろん、高血圧や糖尿病の治療効果の指標としてより短期的な、血圧や血糖値のコントロールの度合いを取ることもできる。しかし、これらの指標は長期的な指標に比べ「中間的なアウトカム指標」と呼ばれ、科学的な根拠を示す指標のレベルとして重視されていない。

今、心・脳血管疾患の発生率を効果指標として使うとすると、比較可能な医療技術は高血圧、糖尿病、高脂血症などの内科の外来治療と、心筋梗塞や狭心症、脳梗塞や脳出血に対する外科も含めた入院治療の効果を比較することが出来る。かなり広い医学技術の分野をカバーすることになるが、それでもがんや認知症といった重要性の高い分野との比較はできない。

医療費用全体の配分を決めるために医療技術評価を行うためには、疾患分野に依存しない包括的な効果指標が必要となる。限られた疾患に対する医療技術同士の効果を比べる限定的な効果指標を用いることも出来るが、疾患分野ごとの医療費用の配分については医療技術評価以外の方法を用いるしかない。

3.2 QALY（Quality-adjusted life years：質調整生存年）

一方、包括的な効果指標であるからと言って生存年を使うと、生死に関わらない治療については効果がないとされてしまう。つまり、生存年を目的指標に使うことは、命に関わる疾患を重視するという価値観を果たすことに採用することとなる。こうした生存年は欠点を補うために、現在幅広い分野の医療技術を評価するための指標として用いられているのがQALY（Quality-adjusted life years：質調整生存年）である。これは、生存年にQOLのウェイトをかけたものである。たとえば、完全な健康を1として、今年一年間の健康状態が0.7だったすると、今年のQALYは0.7となる。QALYを用いれば長期間健康状態が変化する場合にもその変化に応じた評価が可能となる。

それでも、それぞれの健康状態に対するQOLウェイトをどのように決めるのであろうか？QOL研究は医学の中の孤立した分野であり、QOL指標は包括的なものから疾患特異的なものまで多数存在する。しかし、QALY計算に使用するQOL指標は、包括的な指標でかつウェイトを計算できるような指標である必要があり、そのようなQOL指標は実に少ない。ここでは医療経済評価にもっともよく使われているEQ-5D（Euro Qol-5 dimensions）を紹介しよう。

図3のように、EQ-5DはQOLを「移動の程度」「身の回りの管理」「ふだんの活動」「痛み／不快感」「不安／ふさぎこみ」の5つの要素に分けており、それぞれ3段階で評価を行う。ここからは、3の5乗の243通りの健康状態を定義できる。5つの要素を見ると、基本的な家の中の活動から外の活動、身体的な健康だけでなく精神的な健康に至るまで幅広く健康をとらえていることがわかる。

QOLウェイトを最も簡単に計測する方法は、0から100までの細かく目盛りをうった物差しを提示し、今の健康状態を目盛りの上でどこに位置するかを示してもらう方法、visual analogue scale（VAS法）である。これにより、EQ-5Dのそれぞれの健康状態にある人に対してVAS法を用いて見れば、QOLウェイトの換算表が作成できる。もう一つの方法は、タイムトレードオフ法（time trade-off: TTO）である。図4のように、ある健康状態で生きる年数と完全な健康状態で生きる年数を比較し、どこで釣り合うかを答えてもらう方法である。今、EQ-5Dで歩き回るのとふだんの活動いくらか問題があり、そのほかには問題がない健康状態だったとする。この健康状態を「2121」と表現する。これと完全な健康状態「11111」を比較する。2121の状態の10年と釣り合う完全な健康状態での年

3) EQ-5Dの他にも、HUI（Health Utility Index）、SF-6DといったQOL調査票からQOLウェイトが計算される。
以下のそれぞれの項目の一つの四角に（このように①）印をつけて、あなたの自身の今日の健康状態を最も良く表している記述を示して下さい。

移動の程度
歩き回るのに問題はない □
歩き回るのにいくらか問題がある □
ベッド（床）に寝たきりである □

身の回りの管理
身の回りの管理に問題はない □
洗面や着替えを自分でするのにいくらか問題がある □
洗面や着替えを自分でできない □

ふだんの活動 （例：仕事、勉強、家族・余暇活動）
ふだんの活動を行うのに問題はない □
ふだんの活動を行うのにいくらか問題がある □
ふだんの活動を行うことができない □

痛み/不快感
痛みや不快感はない □
中程度の痛みや不快感がある □
ひどい痛みや不快感がある □

不安/ふさぎ込み
不安でもふさぎ込んでもいない □
中程度に不安あるいはふさぎ込んでいる □
ひどく不安あるいはふさぎ込んでいる □

図3．EQ-5Dの質問票

「21211」の状態で10年
● 歩き回りとふだんの活動に「いくらか問題」

完全に健康の状態でX年
● すべてにわたり「問題はない」

図4．タイムトレードオフ法によるQOLウェイトの推定（概念図）

数が9年であれば、「21211」のQOLウェイトは0.9と推定される。日本でも、621人の一般の人々にタイムトレードオフ法を用いてEQ-5DのQOLウェイトを推定した換算表が広く用いられている[7]。ちなみに、この換算表では「21211」のウェイトは0.730であった。

客観的な数値である生存年に比べ、どのQOL指標を使い、どのウェイト推定方法を使おうとも、QALYは健康に対する主観的な価値を測ろうとしている。経済評価の手法の分類として、生存年や死亡率などの客観指標を使う場合を特に「（狭義の）費用効果分析」と呼び5）。QALYを用いる場合を「費用効用分析」と呼ぶ。これは、QALYが経済学、特にミクロ経済学で消費

4）従来のEQ-5Dでは、5つの要素について5つのレベルの健康状態を想定していたが、5つのレベルに増やしたEQ-5D-5Lが作成された。日本でもこの調査票に基づいた新しいQOLウェイトの推定プロジェクトが行われている。
5）「費用効果分析」という用語は、幅広く経済評価全体を使う場合もあるため注意が必要である。
者行動を説明する時に用いられる「効用」の指標と考えられるのではないかという点から始まっている。しかし、効用を測定可能で他人同士で比較可能な実態のある数字として扱うこととは、経済学では以前は行われていたが現在では主流ではない。

3.3 経済学における健康の価値付け

現代のミクロ経済学理論では、効用は理論上の道具としての意味しかたない。健康を効用指標として直接測ろうとする考え方ではなく、健康の変化の価値を測るのは、金銭の形で測られることが一般的である。これは、市場でのお金のやりとりを通じて、人々の価値観を観察するという方法で、顕示選好法（revealed preference: RP）と呼ばれる。

RP法を用いて、生命の価値を評価している例が Viscusi の value of statistical life（VSL）である [8]。生命に対する危険が高い職業での賃金が高いことに注目し、そのほかの賃金の決定要因を調整した上で生命の価値を推定している。労働者が、それぞれの仕事の死亡リスクをしっかりと理解し、労働供給を決めているという想定が可能であれば、死亡リスクが違う労働サービス自体は市場で取引され賃金が支払われているため、直接的に死亡リスク減少の価値を金銭で評価することが可能となる。

RP法のように、市場で取引されていないものの価値を評価する方法が表面選好法（stated preference: SP）である。上で述べた Viscusi も、現状では市場で取引されていない商品を想定してがんの死亡リスクを下げることが金銭価値を推定している [9]。水道水に含まれるとあると取るフィルターが売られているとして、それが10万人あたり年間例えば3人の膀胱がん死亡を予防したとしたらいくら払って買いますか？という質問をする。この財は実際市場に出回っているわけではないので、消費者が死亡リスクを自分で支払う金銭と比較して、その相違を測定するかについては、リスクを正しく理解するかにかかって、実際に市場に出回ったときに本当に買うかどうかという仮定と現実の乖離の問題を抱えている。

図4で示しているタイムトレードオフ法によるQOL ウェイトの推定を、SP法に近いといえる。仮想的なトレードオフを設定し人々に答えてももらう点では同じである。しかし、上記の水道水に含まれるフィルターについては将来市場で取引される可能性もあるが、図4のように健康状態改善と寿命が取引されるのは現実性がない。

このように経済学において健康の価値付けを行う際には、実際に現在取引があるかどうかは別として市場での取引を通じて、健康の変化に金銭的に価値付けを置くことを目標とする。健康の変化を金銭的に価値付けすることが出来れば、その変化を得るために使った費用と金銭単位で直接比較できる。健康を金銭評価して行う経済評価を費用便益分析という。しかし、上で見たようにRP法にしろSP法にしろ、多くの人が納得する形で健康の金銭価値を測るのは非常に難しい。

健康を金銭的に価値づける際、効用はあくまで消費者行動をモデル化する際の道具立てであり、効用を直接測るわけではない。医療の資源配分に関する経済学的な基礎付けを重視する立場からいえば、HTAの分野は効用を測定可能で比較可能な指標として取り扱っている変った分野ということになる。一方、経済学的な基礎付けより医療資源の配分政策の実情を考えると、健康を数値化した指標が重要であり、QALYはその有力な候補として一つであるという見方もある [10]。

このように、資源配分の望ましさに関する経済学（厚生経済学）との距離によっても医療の経済評価でとられる方法が左右される。通常厚生経済学では、個人の効用最大化に立脚して資源配分が評価される。したがって、医療サービスの結果を評価するのは患者自身である。実際、患者に上記5項目の調査票を答えてもらうことで健康状態の望ましさが評価される。しかし、5項目のQOLから0〜1のQOLウェイトへの変換については、患者が答える場合と一般の人々が答える場合がある。公的医療制度の資源配分の際には、一般の人々によって評価されたウェ
イトを使用されることが多い。これは、健康状態の評価と、健康状態の価値の評価を分けて考え、後者については公的医療制度を支える一般の人々の価値観を重視するべきだという考え方によるのだが、サービス消費者の評価を重視する厚生経済学の原則からは異なっている。

3.4 費用の範囲と分析の立場

効果指標に基づいて、費用については客観的に金銭単位で計測可能である。しかし、どの費用まで分析に含まれるかは、誰の立場で分析を行うかによる。公的医療制度の資源配分であれば、公的医療費のみを考慮に入れればよいと考えるかもしれない。しかし、公的医療費の使い方を変えた場合、影響を受けるのは医療の世界ではない。もう少し広く、医療以外の介護などの公共サービスの費用も考慮する立場を、公共セクターの立場（public sector perspective）という。

公共サービスの費用だけではなく社会全体の費用の変化を考慮に入れる立場を社会の立場（societal perspective）という。たとえば、在院日数を短くするために入院医療から在宅医療へ患者を移動させる場合を考えてみよう。公共セクターの立場では、入院医療費の減少と、在宅医療にかかる訪問などの医療費や訪問看護のための介護費の増加を比較することになる。社会の立場になると、特に家族の時間の使い方が変わることによる費用を考慮する必要がある。在宅医療や介護が完全に公的なサービスで完結すればよい、家族によるサービスで補完する必要がある場合には家族が介護に費やした時間費用が新たに発生することになる。

社会の立場から費用を考えるときに常に問題になるのが生産性損失である。生産性損失は、病気により働かなくなったりにその人が働いていた時に生産したであろうモノやサービスの価値である。働きで生産されるモノやサービスの価値は、賃金によって労働者に支払われると考えられるので、通常生産性を金銭評価するときに離職期間を考慮し総賃金が用いられることが多い。

健康が改善することにより、労働を通じて社会全体に価値を与えておりそれを評価することが理にかなっているように見える。しかし、図3のQOL質問票を見てみよう。EQ-5Dでは、「ふだんの活動」という項目で、仕事が出来るようになることをQOLが改善する方向で評価している。健康改善による労働参加を労働を通じた生産性向上の金銭的な評価とQOL改善という健康面での評価の両方で評価することは、二重計算になるので生産性損失は費用に含めるべきではないという議論もある[11]。逆に、生産性損失のような金銭で測られる効果は費用の変化として考慮に入るべきだという意見もある[12]。

一方、生産性損失を考慮に入れることは、労働参加がより低い入念を対象にした医療サービスを費用効果が低いと評価することにつながる。生産性損失を考慮に入れるかどうかの取り扱いは、何を社会として優先するべきかの価値観にも関連するため、各国でも対応が分かれていく。

4. 費用効果の分析結果の評価

これまでの、費用効果の分析方法を一つに決めること自体が、結果的に特定の医療技術を優先させる結果となりうることを述べてきた。そこで、実際の分析結果の報告では、複数の方法論を用いて分析結果が併記されることも多い。効果指標を余命延長とQALYの双方を用いたり、公共セクターの立場と社会的な立場の両方から分析を行うことが行われる。

以下では、費用効果の分析結果の評価に際して、社会の価値観が問題となる観点をいくつか紹介する。

4.1 費用効果の間

図1で示したように、費用と効果のトレードオフが問題となるのは、新技術が既存技術に比べて費用も効果も高い第1象限に含まれる場合である。図1の2つの技術A,BではBの方が費用効果が高いとは判断できる。しかし、相対的な費用効果の大小ではなく、ある技術がお金に見合う価値があるかどうかを判断するには何らかの基準が必要となる。
医療技術の費用効果の指標としては、次の ICER（incremental cost-effectiveness ratio：増分費用効果比）が最も一般的である。

\[\text{ICER} = \frac{\Delta \text{費用}}{\Delta \text{効果}} \]

最も簡単な費用効果分析の結果を用いた意思決定方法は、ICER の閾値を決めており、その額を下回った医療技術をすべて保険診療に採用するという方法である。その場合の費用自体はどのようにして決めるのであろうか。

一つ目は、トップダウンである目安の額を決めてしまう方法である。WHO（World Health Organization：世界保健機関）では、その国の GDP（国内総生産）を元に ICER の閾値を設定するように提案したことがある。ICER が一人あたりの GDP を下回る場合は非常に費用効果的、一人あたりの GDP の1〜3倍に入る場合は費用効果的だと言明した。実証的な根拠には乏しく、このようなトップダウン型の閾値が採用されることは先進国の場合はほとんどない。

二つ目は、WTP: Willingness to payを基準にした方法である。WTP が1〜3万ドル入る場合は費用効果的だと推奨した。実証的な根拠には乏しく、このようにトップダウン型の閾値が採用されることは先進国の場合はほとんどない。

日本人に対する調査では、IQALY に対する WTP は自分の健康改善に自分がお金を払う場合には500万円、家族の健康改善に自分がお金を払う場合には640万円、他人の健康改善に社会が払うべきと考える金額は540万円（いずれも平均）であった [14]。

五つ目は、最简单な費用効果分析の結果を用いた意思決定方法は、ICER の閾値を決めており、その閾値を下回った医療技術をすべて保険診療に採用するという方法である。その場合の費用自体はどのようにして決めるのであろうか。

実際各国ではどのように閾値を設定しているのであろうか。トップダウン型にしろ、実証的に WTP を推定するにしろ、一つの値で決めているところは少ない。表 3 は各国の HTA 機関に聞き取り調査を行い ICER の閾値についての対応をまとめたものである [15]。これをみると、閾値を一つに決めている国はオランダとスウェーデンのみで、閾値の範囲を示している国が英語とタイである。それ以外の国でははっきりと閾値が表現されてはいない。

HTA の先進国イギリスでも、2008 年に出された経済評価ガイドラインでは、ICER の閾値は明記されていたなかった。これについては、ICER の閾値を明記してしまえば、本来はもっと安価で供給できる医療技術であっても閾値足りるに至るよう費用を高く報告するインセンティブを与えるといった議論もあった。その後経済評価の実績が蓄積されると、それまでの意思決定における定常な分析が行われた。その後、ICER の明確な閾値が存在しその前後ではっきりと適応の可否が決まっているよりもむしろ、費用効果以外の要素も考慮して総合的に判断されていることがわかった [16]。ICER の閾値の範囲についても、HTA の進展とともに徐々に具体化し現在では、QALY を評価指標にして ICER が 20,000 £未満なら通常は公共の医療への適応を推奨し、20,000〜30,000 £

<table>
<thead>
<tr>
<th>国名</th>
<th>イギリス</th>
<th>オランダ</th>
<th>スウェーデン</th>
<th>フランス</th>
<th>カナダ</th>
<th>オーストラリア</th>
<th>韓国</th>
<th>タイ</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTP</td>
<td>2〜3万ポンド</td>
<td>4万円</td>
<td>40万クローネ</td>
<td>なし</td>
<td>なし</td>
<td>なし</td>
<td>なし</td>
<td>15〜18万 パーチ</td>
</tr>
</tbody>
</table>

6) すべての技術の ICER がわかっていれば、ICER の低い順に技術を並べ ICER の低いものから予算が少なくなるまで採用するという方法もある。90 年代、アメリカのオレゴン州で非所得者向けの公的医療制度メディケアの適応範囲の決定に利用されたことがある。しかし、多くの技術を分析するために個々の分析が粗くなったなどの理由により ICER の順序表（league table という）に対する異論が多く、現在では使われていない。
の間であれば他の要素を考慮して決定。30,000 £以上の場合は特にその技術を支持する強い理由があれば推奨という判断を行っている [17]。

4.2 費用効果以外の要素に関する考慮

医療技術の費用効果分析は、効果指標の改善を生むのにどれくらいの費用が使われるかという効率性を評価するものであり、誰が健康改善を受けるかは問題としない。通常はどの場合でも健康改善の価値の等しいとされる、そのにはすでに「どの治療も（健康改善の度合いが等しいければ）平等に扱うべき」という価値判断がされている。しかし、場合によって健康改善の価値が変わるとしたらどうだろうか？価値判断の対象になる要素を「患者レベル」「病患レベル」「技術レベル」の3つに分ける。患者レベルでは、年齢、性別、所得などの患者の属性や、生活習慣などが考えられる。疾患レベルでは、遺伝病や生活習慣病、感染症といった病気の種類、治療対象患者数などが考えられる。技術レベルでは、実用化までの年数、薬物・放射線・遺伝子といった技術の種類や倫理的な問題の有無、技術そのものの革新性や、今後の発展可能性などが考えられる。

このように患者属性、疾患の種類、治療内容によって健康改善の価値を公平に扱うという点について、特定の人々に対して重視（非重視）するべきだという規範的な議論と、実際に人々が健康改善を受ける人によって異なるウェイト付けをするのだろうか？するとしても誰を重視（非重視）しようと考えているかについて分析を行う実証的な議論の2つがある。

規範的な議論の例としては、すべての人はある一定以上の年数を生きる権利があるというfair innings（ファーイ・インニング）の議論がある [18]。これに従えれば、同じ効果の場合、若年者が受ける小児に関する病気に関する医療技術の方が優先される。また、命を脅かすような状態にある患者をそうでない患者より優先するべきだという、rule of rescue（救命原則）の議論も知られている [19]。

Dolanらの実証研究のレビューによると、人々が考慮に入れている要素として、元々の健康状態、改善後の健康状態、年齢、生活習慣、家族の有無、社会階層などを挙げている [20]。

実証的な研究結果は、調査対象や方法論によって異なる場合も見られ、規範的な議論に合うような選好が観察される場合もあるが、対立する実証結果が見られる場合もある [21]。例えば、改善前の健康状態に関しては上記の規範的な議論と反して、低水準の健康の人への健康改善よりも中程度の健康の人への健康改善の方が社会的な評価を高いとする研究もある [22] [23]。

誰の健康改善を優先すべきかという公平性の議論については唯一の決着をつけるのは大変難しい。人々がどのように考えているかについての実証的な評価は、ある程度人々の選好を反映しているため規範的な判断を行う際の参考になる。しかし、方法論によって結果が異なるためや、人々への一時的な調査結果は議論や熟慮を経た意見ではないため、規範的な判断をするための決定的な証拠にはならないという意見も根強い [24]。

一方で、費用効果の分析結果を評価し医療資源配分を決定する場合には、費用効果以外の要素をどのように判断するかについてあらかじめ何かの原則を決定しておく必要がある。イギリスのNICEでは、社会的価値判断に関する原則をまとめたガイドライン（以下ガイドライン）を作成している [25]。このガイドライン作成に大きな影響を与えているのは、NICE内に組織されているCitizens Council（市民評議会）である。

4.3 市民評議会での議論とNICEの社会的価値判断

NICEのCitizens Councilは、2002年に設置された。この制度はイングランドで古くから裁判に取り入れられている陪審制を基にしており、30人のイギリス市民からなる。委員は公募され、地域、性別、年齢、人種、職業の偏りがないように選ばれる。評議会での議論は、1年に1～2回、2泊3日の日程で次のように進められる [26]。

市民評議会では、毎回特定の問題について議
論を行う。テーマとしては、公的医療サービスの範囲を決める際に年齢を考え入れるべきか？（2003年）、救命原則を考慮に入れるべきか？（2006年）などが話し合わされた。まずは、外部の専門家が課題に対する異なる議論や実証的な証拠の説明をうけたうえで議論を行う。議論の結果について詳細なレポートが作成され、与えられた課題にはっきりと回答を出す。2011年のレポートでは、「公衆衛生の改善のために、人々の行動変容を促すために金銭的なインセンティブを与えるべきか？」について、金銭的なインセンティブが禁煙や危険薬物の使用防止など健康改善につながる科学的な根拠があるが、公共の資金をつかって人々に“わいちゃん”を渡しているようであり良いとは思わないと報告を行った。

ガイドラインは、市民評議会のレポートとそれが関連法規と矛盾ないかを吟味して制定される。特に2010年平成法では、NICEが出す判断が社会経済的な不平等を減らすためにどのように役立つかを検討する義務を負う。そのため、各医療技術を公的医療サービスで供給するかの推薦決定についても、それぞれがガイドラインに沿ったかどうかを検討し、もしガイドラインに沿った決定できない場合には理由を明らかにする必要がある。

5. 社会的価値判断と科学的判断

本稿では、現在日本で進んでいるHTAにおいて、どのような社会的価値判断が問題となっているかを述べてきた。

医療技術の評価軸は、社会状況の変化に応じて、健康改善から費用効果に広がってきた。単に健康改善の効果を分析するのではあれば、バイアスの生じない研究デザインで真に治療効果の判断を行っているかという科学的な判断だけが重視される。健康改善の科学的分析をする段階でも、検査値や罹患といった客観的な数値ではなくQOLといった人々の生活に関わる項目を治療効果の判断基準にする場合、人々の価値観がすでに反映された指標を用いて科学的な分析が行われている。したがって、完全に科学的な判断だけで足りるという場面は少なく、社会的に価値判断が暗に含まれるという場面も多い。

公的な社会保障制度としての医療が財政的に持続可能であるために近年では、医療技術の費用効果を判断基準にする国が増えてきている。医療技術の社会的な価値とそれがお金に見合うかを分析評価するためには、これまでにもまして社会的な価値観を考慮することが重視されている。実際に、健康改善に対して払われる金額としていくらまでなら効率的だと判断出来るか（ICERの閾値）に関しては、実証的に社会的な価値観を定量する試みも始まっており、社会科学的な研究が価値観を考慮した判断を助ける可能性もある。

医療技術の効率性が同じだった場合に、医療技術の種類や対象者によって重みを付けるかどうかについての議論については、明示的にウェイトを付けて分析を行うという方法7）などにより科学的な分析の段階に価値判断を入れ込むことは行われていない。市民との認識を重ねた上で判断の原則を定め、原則に基づいて個々の医療技術の評価を行っている。一方で、2011年までのNICEの判断を分析した研究によれば、NICEは特に中程度のICERの場合費用効果以外の要素を総合的に考慮するとされているものの、実際にはICER以外の影響は少ないため、より踏み込んだ判断を行い費用効果以外の要素についてもICERのような基準を明確にするべきだという意見もある[28]。

日本では、費用効果の観点を導入することについて、平成28年度の診療報酬改定での試行的導入を視野に検討を進めている段階である。医療資源の配分の際に社会的な価値観を十分に

考慮するためには、分析の方法論の検討段階での潜在的な価値判断を明確にすると共に、より判断の難しい公平性に対する議論については、人々の選好の調査や幅広い熱議といった判断のための材料の収集が不可欠であろう。HTA 先進国であるイギリスの例をみても、一朝一夕に望ましい制度が出来るわけではなく、多数の試行錯誤が必要となる。

参考文献
for equality in health? Reasons to reconsider properties of applied social welfare functions, Social Science & Medicine, 75(10), 1836–1843 (2012).

