Structural history of northern Koshiki Islands and northern Okinawa Trough

Hisashi Oiwane*, Satoshi Tonai* and Shoichi Kiyokawa**

Structural evidences in the Koshiki Islands and northern Okinawa trough are very important to understand the opening history of the back arc basin. Based on the fault orientation, fault character, cross-cutting relationship and moved direction, NNE-trending fault system of each area is identified as the rifting phase deformation of the Northern Okinawa-trough. The youngest is the northern Okinawa Trough which formed E-W trend sedimentary basin with ENE-trending fault are related in recent stress field of the Kyushu area.

Key words : Koshiki Islands, Okinawa Trough, seismic reflection, tectonic evolution

北部沖縄トラフと甑島列島北部の構造発達史

大岩根 尚*・藤内 智士*・清川 昌一**

Structural history of northern Koshiki Islands and northern Okinawa Trough

Hisashi Oiwane*, Satoshi Tonai* and Shoichi Kiyokawa**

Structural evidences in the Koshiki Islands and northern Okinawa trough are very important to understand the opening history of the back arc basin. Based on the fault orientation, fault character, cross-cutting relationship and moved direction, NNE-trending fault system of each area is identified as the rifting phase deformation of the Northern Okinawa-trough. The youngest is the northern Okinawa Trough which formed E-W trend sedimentary basin with ENE-trending fault are related in recent stress field of the Kyushu area.

Key words : Koshiki Islands, Okinawa Trough, seismic reflection, tectonic evolution

はじめに

九州西方から台湾東岸まで1,000 km以上にわたる長大な地構である沖縄トラフは、発達初期段階の背弧海盆として知られている（Letouzey and Kimura, 1985）。沖縄トラフ海底には第四紀の火山や熱水活動が多数確認されており、現在もその活動は継続している。沖縄トラフの構造発達史を明らかにすることは、大陸縁背弧海盆の活動に関連した断層の伝播や堆積作用などについての詳細な知識を得ることにつながる。

現在、沖縄トラフの形成開始に関しては大きく二つの説がある。一つは古地磁気学的証拠よりルソン弧の衝突に起因した南部からの始まりを主張する説（Miki, 1995）、もう一つは水深や地溝の幅、累進-地溝地形、地殻の厚さなどの地質構造の特徴より北部からの拡大を主張する説（Sibuet et al., 1995）であるが、海底の構造と陸上断層系との関連を具体的に述べた研究例はない。

本研究では、(1) 沖縄トラフ形成の際の地質記録が残されている可能性のある鹿児島県甑島列島北部に見られる北北東方向の断層系を調査し、(2) 北部沖縄トラフ海域（男女海溝周辺）の反射法地震波探査記録に観察される地質構造を明らかにし、両者を対比することで、北部沖縄トラフ地域の構造運動について考察した。

甑島列島の地質

甑島列島には、上部白亜系姫浦層群と古第三系甑島層群、中新統の花崗凝灰岩類、および複数の岩脈群が分布する（Fig. 1）。姫浦層群と甑島層群は傾斜不整合で接しており（田中・寺岡, 1973）。姫浦層群は全地域中で分布し、甑島層群は甑島地域部に、どちらも概ね北東傾斜で露出している。姫浦層群は奥に海成層で、上方粗粒化をなす砂泥互層からなる（田中・寺岡, 1973）。一方、甑島層群は赤色泥岩を挟み、始新世の蛇行河川などの堆積物と考えられている（井上ほか, 1979）。上記の堆積岩中に貫入する石英砂岩および花崗砂岩の岩体はそれぞれ甑島と下甑島南端部に産し、甑島のものです（14.0±1.6 Maのフィッシュトラック年代が得られている（宮地・高井, 1988）。

甑島列島に発達する断層系は、北西-南東走向のもの（F1断層群）と北北東-南南西走向のもの（F3断層群）が卓越し
北部沖縄トラフの海底地質構造

本研究では、九州西側の甑島から五島列島にかけての北部沖縄トラフにおいて、海上保安庁水路部が行ったシングルチャンネル反射法探査の東西測線の断面図を用いて構造解釈を行った。測線は40測線で、それぞれの間隔は約2kmである。東西方向の断面図と海底地形から海底の断層系の変位量や変位方向を識別し、その結果、本海域には北部東方向と東北東方向の2つの断層群がみられることが分かった（Fig. 2）。

1. 北北東走向の断層群

地形的な特徴を観察すると（Fig. 2）、東海対岸から九州にかけての沖縄トラフ東縁の斜面は急崖によって壊されていているのに対し、東シナ海の大陸棚から東海対岸のトラフ西縁の斜面は緩斜面となっている。反射法探査の断面図によって観察すると（Fig. 3A）、沖縄トラフ東縁の急崖は断層崖であることがわかる。これは各断面図から北東東方向に傾斜することがある。このような北北東走向の断層は複数みられ、数十から数百kmの長さをもって北部沖縄トラフ東縁部に運行情状に分布し、運行情状の断層崖を形成している。これらの断層崖は鉛直方向に少なくとも700mの変位量をもっている。北部沖縄トラフはこの運行情状の断層によって陥没し、全体として北北東方向に延長する陥没地形を形成している。つまりトラフ東縁の北北東方向の断層群が沖縄トラフ北部の地形を形成した断層群であることが明らかになった。

一方、西側の緩斜面を反射法地震波探査の断面図を用いて観察すると、東縁の運行情状の活動によって東に向かって傾斜したブロックの上面が緩斜面をなしていることが分かった（Fig. 3B）。

陥没地形の形成に伴って堆積したと考えられる堆積物は、沖縄トラフ中央部に平坦面を形成している。反射法探査の断面図により堆積物の厚さを観察すると、概ね東に向かって厚くなり（Fig. 3B）、男女海盆中央部では3,000m程度の厚さの堆積物があることが明らかになった。

2. 東北東走向の断層群

東北東走向の断層群は、北部沖縄トラフ北東中央部にみられる。ここでは、地表変位のある断層として約30km追跡することができ（Fig. 2）、堆積堆積物を最も多く150m程度変位させている。この断層の北側には、東北東方向に長軸をもつ円形の陥没地形が形成されており、トラフ底堆積物の平坦面よりさらに落ち込んで深くなっている（Fig. 2-B, 3-B）。反射法探査の断面図からこの部分を観察すると、緩やかな南東方向に傾斜する層面がみられる。この断層群は表層堆積物を変位・傾斜させ、かつ北東方向の断層系に斜めしており、北北東走向の断層群より新しい。

Fig. 1 Geologic map of Northern Koshiki Islands. Modified after Inoue et al., 1982.
構造であると考えられる。

籠島列島と北部沖縄トラフの構造対比

籠島列島と沖縄トラフ北部の地質構造を対比し、沖縄トラフ形成との関連について考察する。籠島列島に分布する北北東走向のF1断層群は、走向や移動方向、地形に顕著に現われるなどの特徴が北部沖縄トラフ海底にみられる北北東断層群と類似する。そのため、陸上、海底の北北東走向の断層は同一活動で形成した断層群であると考えられる（Fig. 2）。よって両者をまとめてF2断層群とよぶ。F1断層群の活動開始時期は、籠島列島の陸上調査より7Ma頃であることのわかった。海底のF1断層群も同時期に活動を開始してい
たと考えると、7Ma頃に北北東走向の断層群が活動することとで沖縄トラフ形成が始まっていたことになる。この結果は、堆積物との切断関係から考えられていた1.6Ma以降（徳山ほか, 2001）よりも早い時期に沖縄トラフの形成開始が始まっていた可能性を示している。

一方、東北東走向の断層群は別府-神原地溝帯（松本, 1979）のほぼ延長線上にあたり、測地によって明らかにされた現在の九州中部で南北伸長（多田, 1984, 1985）や、地震の発震機構から推定されたかの海盆における北北東方向の伸張場（Kubo and Fukuyama, 2003）を反映する断層群である。F1断層群は南北伸長の現在の応力場を反映した正断層である可能性が高い。
Fig. 3 Seismic profiles and interpretation of northern Okinawa trough. Lines are shown in Fig. 2.

まと め

鷹島列島に分布する北東東走向の F1 断層群と北部沖縄トラフの東北東走向の F2 断層群は、その類似性からともに北部沖縄トラフ形成時にできた断層系であると考えられる。また、貫入岩との関係より、7 Ma 頃には沖縄トラフの形成が始まっていた可能性が示された。

北部沖縄トラフ北西中央部には別府島原地溝帯に連続する東北東走向の断層群がある。これは北東東走向の F2 断層群に斜交し、現在の九州中央部から男女海盆にかけての応力場を反映していると考えられる。

謝 辞

本研究を進めるにあたり、現地での野調調査の際には鹿島市役所里支所の岸 広徳氏、鹿島支所の
橋野 秀氏をはじめとする読者の方々にお世話をしていただいた。深く感謝いたします。大岩内・藤内はそれぞれ平成 15、16 年度の「松本達郎教授奨学金資金」の一部を使用した。ここに記して感謝いたします。今回用いた反射法地震波探査のデータは、九州東海大学崎村 清氏が海上保安庁水路部（当時）から提供を受けたものを使用させていただいた。崎村 清氏およびデータ取得を行った海上保安庁水路部（当時）の方々に感謝致します。また、本論作成にあたって有益な助言を下さった査読者の方に厚くお礼を申し上げます。

文 献
井上英二・佐藤良昭・髙井保明・中尾征三，1979：鹿児島県上甑島の古第三系。地質調査所月報，30，141–176。
井上英二・田中啓策・寺岡康治，1982：中甑地域の地質。地域地質研究報告，鹿児島（15），78。
藤内智士・板谷徹丸・大岩内・尚・清川昌一，2007：甑島列島北部地域における断層の構造と K-Ar 年代。64。
松本達郎，1979：九州における火山活動と階層構造に関する諸問題。地質学論集，16，127–139。
Miki, M., 1995 : Two-Phase opening for the Okinawa Trough inferred from paleomagnetic study of the Ryukyu arc. Journal of geophysical research, 100, 8169–8184。
宮地幸夫・高井正夫，1988：九州の第三紀花崗岩類のフィショントラック年代。九大教養地研報，26，1–3。
多田 勝，1984：沖縄トラフの拡大と九州地方の地殻変動。地震，2，407–415。
多田 勝，1985：沖縄トラフの拡大と九州地方の地殻変動（2）。地震，2，1–12。
田中啓策・寺岡昌司，1973：鹿児島県甑島の上部白亜系姫浦層群。地質調査所月報，24，157–184。
徳山英一・本庄栄一・木村政昭・倉本真一・芦生一郎・岡村行信・荒戸裕之・伊藤康人・徐 垣・山野亮太・野原智・阿部典信・坂井真一・向山建二郎，2001：日本周辺海域中新世最末期以降の構造発達史。海洋調査技術，13，27–53。