水田土壌における炭素循環と微生物群集

木村真

名古屋大学大学院生命農学研究科

(Carbon cycling and microbial communities in paddy field soils)

Makoto Kimura

Graduate School of Bioagricultural Sciences, Nagoya University

わが国の風土に適応した水田稲作は、稲作に比べて持続的で収量が高く、有機炭素蓄積能、生物多様性に優れ国土地の保全にも寄与している。しかし、地球温暖化の観点から、水田からのメタンの発生が危惧されている。水田の高い肥沃性とメタンの発生はいずれも、水田における有機物の供給とその後の分解、分解に関与する微生物群集と深く関わっている。本研究では、1)水田に供給される各種有機物の種類と供給量を定量的に評価し水田の肥沃性の実態を明らかにするとともに、2)各種有機物の微生物分解と、その結果生成した二酸化炭素、水溶性有機物の土壌中での動態と水田の肥沃性に及ぼす影響、加えて3)水田から発生するメタンの起源と土壌中での動態を明らかにした。ついて、4)水田各部位に生育する微生物群集の特徴と多様性を評価するとともに、水生生態系の生態、水田のウイルス群集の特徴を明らかにすることにより、水田における炭素循環と土壌肥沃性、生物多様性の実態解明を目的とした。

Key words：植物遺体、炭素循環、土壌生態系、根分泌物、微生物群集

1. 水田土壌中における有機物の動態、微生物代謝

1) 水田土壌において供給される有機物、土壌中での微生物分解

(1) 植物残渣

水田土壌において供給される有機物の種類と量は圃場の管理方法により大きく異なると予想される。そこで、旧農業研究センター出雲試験地の長期肥料施用試験圃場で、雑草・蒸発量、水稲生育期間中の水稲枯死葉・根量、根分泌量、割取後の刈株・根残量を調査するとともに、既往のデータを活用し、その総量は1ヘクタール当たり無肥料区で14～39t、無機質肥料区で40～67t、緑肥区で78～97t、有機質肥料区で83～93tに達し、緑肥や堆肥に由来する有機物量は供給総有機物量の2割弱に過ぎず、水稲の刈株や根残、雑草由来の植物残渣の寄与が5～6割を占めることを明らかにした（図1）1)。次いで、出雲試験地に加えて、タイおよびフィリピンの各種水田土壌中の植物残渣を1,2,4mmの篩を用いて採取し、そのC/N比を測定した結果、その値は4mm以上＞2～4mm＞1～2mmの順に大きく減少し、1～2mm厚の植物残渣のC/N比は年間を通して、また土壌の種類によらず、15～20の値を示した2,3)。稲ワラを含めた植物残渣は通常高いC/N比を有し、土壌中での分解に伴ってそのC/N比が低下する。微生物の増殖効率、微生物体のC/N比、酸を用いた植物残渣の回収時における分解微生物の回収割合などをさまざまな仮定し、植物残渣の分解率ができるだけ少ない条件でC/Nが20に達するまでの分解割合を試算した結果、これら供給植物残渣が微生物分解により1mm程度の大きさに収縮されるまでに、含有有機炭素の約50%が消失するものと推察した4)。

(2) 水稲体

水稲根から供給される有機物と水稲の刈株や残根が水田

2009年7月3日受理・2009年7月13日受理

図1 水田土壌に供給される各種有機物の割合
土壌中の微生物にとってどの程度重要な基質であるかを明らかにすることを目的に、ポット栽培した水稲に生育期間中数回 CO₂を短時間光合成させ、収穫日に土壌中の有機物、微生物バイオマス炭素、土壌から抽出したリン脂質脂肪酸中の 13C を測定し、光合成産物の土壌中の動態を調査した。その結果、光合成炭素の 0.41%が微生物バイオマス炭素として回収され、収穫期に存在した微生物の 29%が光合成産物を利用して増殖したものと推定された。すなわち、土壌微生物（主にヒューマン菌）として平均で 3%が回収された。次いで、水稲残渣（地上部、根）と収穫期の微生物群集の各期間における変化を明らかにするため、上記の実験で 13CO₂を同化させた水稲体の地上部と根を土壌に奨励、240日間 15Cで培養した。また、水稲根を除去した土壌も同様に培養し、水稲根由来の有機物を基質として増殖した微生物、水稲根由来の有機物の変動も観察した。土壌中の水稲根由来の微生物、有機物にそれぞれ 50%、44%の減少が観察され、水稲残渣、根由来の微生物と土壌中微生物が冬期の間に速やかに分解、消失していると推察された（図2）。

以上の結果より、水稲生育期間には根茎由水稲光合成産物と植物遺体が、落水期には植物遺体が土壌微生物の主な基質であることが判明した。

2）土壌呼吸と水田土壌の肥沃性

水稲土壌では、有機物の分解に伴って生成した二酸化炭素の大半が重炭酸イオンとして溶存し、浸透水とともに各種陽イオン（変分成分）を対イオンとして下層土に移行し、作土の肥沃性に影響を及ぼしていると考えられる。そこで、作土、下層土に含まれた水田土壌中の栄養塩類の動態と密接に関連する溶存無機態炭素（DIC）の動態を調査した。愛知県安城市農業技術センター内の水田では、浸透期を通じて、暗渠水の中の栄養塩類濃度は常に浸透水との濃度よりも高く、1作期期間40cmの土壤層よりCa、Mg、K、Feがそれぞれ 23～129、85～243、1～49、84～170 kg ha⁻¹を溶脱していたが、また、暗渠水中の塩素イオン量と重炭酸イオンを含む硝化イオン量の間に 1 ： 1 の関係が保たれ、土壌中に生成した DIC の一方への浸透は栄養塩類が溶脱すると推察した。

さらに、作土層下 13cm と深さ 40cm の部位から採取した浸透水の栄養塩類濃度を比較したところ、作土から浸透した水稲の栄養塩類濃度を比較したところ、作土から浸透した栄養塩類は DIC の濃度は深さ 40 cm の部位から深さ 80 cm の部位よりも低濃度で、栄養塩類の下層土への集積が推察された。

水稲生育期間、作土中の有機物も下層土へ溶脱する。水稲を栽培してポット実験を行い、水稲栽培期間中に作土から溶脱してくる溶存無機態炭素（DOC）濃度を調査したところ、溶脱 DOC 量は 1 作期期間中に作土中全塩素の約 1 ％に過ぎず、その大部分がフタル酸で 30). PVP (polyvinylpyrrolidone: 芳香性族格骨を有する有機物を吸着) 栄養塩をさらに吸着する栄養塩類が DOC の数割を占めていた。また、作土の還元と田面水の浸透が腐植物質の可溶化と溶脱を促進し 11) 作土から溶脱した DOC はその 50%以上が下層土に吸着、その際、腐植物質は非腐植物質よりも優先して吸着し、主に配位結合すること、その吸着に酸化鉄が寄与していることを明らかにした。

3）水田から発生するメタンの起源

1）土壌有機物起源のメタン

水田はメタンの主要な発生源の一つとされている。メタンの起源物質として土壌有機物、根茎由水稲光合成産物、施用有機物が挙げられる。そこで、各地の水田における土壌有機物に由来するメタンの生成量を、各地に分布する土壌から、代表地の土壌の理化学性と栽培期間の気温より推定し、生成量のどれがフラックスとして主に放出されているかを推定した。推定方法は、窒素の無機化反応が土壌の化学的と栄養分利用の有効性温度で求め、10.8 によることによる炭素無機化反応を推定した。次いで、二酸化炭素とメタンへの分配割合を土壌の酸化容積と還元容積の比から求めた。推定には、当時世界で試されたメタンプラックスの数分の 1 以下と予想してはならない量であった。本推定では、新鮮植物体や水稲根由来の有機物の寄与は考慮されておらず、これら有機物が水田におけるメタン生成に重要な役割を果たしているものと推察された。
（2）水田から発生するメタンの起源

次いで、土壌有機物を含めた水稲根来有機物と施用有機物（稲ワラ）の相対的な寄与割合を求めるために、ポット実験を行った。すなわち、土壌有機物の一部を5%で標識した土壌と5%で標識した稲ワラを用い、1）対照土壌区、2）5%標識土壌区、3）対照土壌に通常の稲ワラを添加した区、4）対照土壌に5%標識稲ワラを添加した区、5）5%標識土壌に通常の稲ワラを添加した区の計5区を準備し、収穫期までメタンフラックスを測定するとともに、発生したメタン中の13Cメタン量を測定し、区1）と区2）から、化学肥料区における土壌有機物由来のメタンの寄与を推定し、残りを水稲由来（光合成由来）メタンとした。また、区3）と区4）から稲ワラ由来メタンの寄与を、区3）と区5）から稲ワラ施用区における土壌有機物由来のメタンの寄与を求め、残りを水稲由来（光合成由来）のメタンとした。

土壌有機物由来のメタンは、稲ワラ施用区、化学肥料区とも作付け期間を通じて常に約20%の寄与率を示した。稲ワラの寄与は、水稲生育初期には80%近い高い寄与割合を示したが、生育中期に約20%にまで低下し、その後徐々に減少した。他方、水稲の光合成産物に由来するメタンは、化学肥料区では常に約80%と高く、稲ワラ施用区でも生育初期に50%以上の寄与率を示した（図3）。なお、水稲の光合成産物に由来するメタンのうち、生育初期には根分泌物に由来するメタンの寄与率が高く15,16。生育後期には根枯死体に由来するメタンの寄与率が高くなることが明らかになった。

4）水田から発生するメタンの水田土壌中の動態

（1）土壌中メタンの透水による下層土への移行

乾田では浸水期間中、水田土壌土壌中に溶存するメタンの一部が浸透水とともに下層土へ移行すると考えられる。そこで、水稲を栽培したポットを用い、水稲生育期間中のメタンフラックスと下層土へのメタンの移行量の関係を調査し、下層へのメタンの移行量はわが国の平均浸透速度条件下（约15mm/日）では、大気へのフラックスの約10%に相当すると推察した17）。

（2）土壌中のメタン存在量と大気への発生量の関係

一般に水田からのメタンフラックスは9月以降減少する。しかし、この原因がメタン生成速度の低下によるのか、生成したメタンの土壌からのフラックスの低下によるのかは不明であった。そこで、土壌中に存在するメタン量とメタンフラックスの関係をポット実験により検証した。稲ワラ施用区では分け前期、大气へのフラックスの増加に伴って土壌中のメタン存在量が減少し、最高分け後期にはフラックスおよび土壌中存在量ともに減少した。生育生長期以降土壌中のメタン存在量は収穫期まで増加したのに対し、大気へのフラックスは8月下旬にピークを示し、9月以降減少した18）。従って、9月以降のメタンフラックスの減少がメタン生成量の低下に起因するのではなく、水稲体を経由するフラックスの低下が主な原因であると判断された。

（3）水田下層土での嫌気的メタン分解

浸水状態の作土カラム、下層土カラム、作土下層土連続カラムのそれぞれから採取した透水液中のメタン濃度を比較し、作土からの浸透水中のメタンが下層土を通じて通過することを見出した。次いで、下層土に代えて作土を連続し、上部作土カラムには稲ワラを添加したところ、下層土と同様に下部作土カラムからの浸透水中のメタン濃度は減少しており、作土中でもメタン分解が進行すると推定した19）。本実験条件では好気的なメタン分解を考えられず、観察されたメタンの分解は嫌気的メタン酸化と判断した。そこで、水田作土、下層土で進行する嫌気的メタン酸化の電子

図3 水稲の生育に伴うメタンフラックス（上図）およびメタンフラックスに寄与する各起源の割合（下図）

図中の数值は、生育期間における寄与割合

NII-Electronic Library Service
2. 水田土壌の微生物群集

微生物生態学分野に近年導入され始めた各種の生化学的、分子生物学的手法を用いて、水田土壌各部位の微生物群集構造の動態調査、解析を行った。すなわち、水田各部位に生息する微生物群集の全体像をリン脂質脳酸（PLFA）組成から定量的に評価するとともに、各部位から抽出したDNAを各種のプライマーを用いてPCR増幅後、変性剤濃度勾配ゲル電気泳動（DGGE）のバンドパターンから微生物群集の多様性を、DGGEバンドの塩基配列から群集構造を解析した。また、水稲根部の微生物群集を走査型電子顕微鏡観察し、さらに田面水中に生息する水生生物を主に目レベルで分類した。加えて、水田のウイルス群集についても調査した。

1）水田土壌各部位に生息する微生物群集とその多様性

（1）田面水、浸透水中の微生物群集

愛知県安城農業技術センター内に長期栽培水田で、水稲栽培期間中田面水中全細胞数は4 x 10^8～1.7 x 10^9cells ml^-1で、グラム陰性菌が優占していた（25）。また、田面水中（深さ13cmおよび40cm）でも、田面水同様グラム陰性菌が優占し、施肥管理の違い、水稲の生育段階の違いに伴って微生物群集構造が変化した（23）。なお、田面水、深さ13cmおよび40cmの浸透水の間で微生物の群集構造を比較した結果、田面水試料と深さ40cmの浸透水試料で群集構造が類似し、作土深さ13cmの浸透水試料と異なっていたことより、作土を通した浸透水が作土の影響を強く受けて（強度の還元化？）いることが推察された（23）。

（2）ミジンコ体表面の微生物

浸透水の水田土壌にミジンコを添加してミクロコスマ実験を行い、ミジンコから抽出したDNAを解析した。真菌群集は、いずれのミジンコ試料においても土壌試料に比べて単純で、特にナガサイミジンコで最も単純であった（21-31）。

また、真菌群集のDGGEバンドパターンを主成分分析した結果、群集構造はまずタマミジンコ（ミジンコ目）、ナガサイミジンコ（ポドコーバ目）、ササオケンミジンコ＋マスジカイミジンコ＋イタサイミジンコ（枝角目）の3つに大別され、その後マスジカイミジンコとイタサイミジンコで真菌細菌群集が区別された（23）。本結果は、異なる目的するミジンコに異なる真菌細菌群集が生じ、同じ目的ミジンコ間で真菌細菌群集が類似することを示唆するものと考えられた。

3）作土中の微生物

作土から抽出したDNA、RNAのDGGEパターンは年間を通じて変動が認められず、生息する微生物の群集構造がほとんど変化しないと推定した（31）。なお、抽出DNAの塩基配列を解読したところ、他の作土中の部位（水稲根、稲穂、稲穂堆肥、浸透水）に比べて、系統的に多様な真菌細菌が生じていた（31）。作土は、環境が他の部位と比べて、不均一かつ栄養豊かであり、これらの特性が存在する真菌細菌の多様性に寄与していると考えられた。

（4）水稲根の微生物

水稲根系は、栄養の異なる多根の根から構成されている。そこで、ポット栽培した水稲の根系から、‘要因’ごとに冠経を採取して肉眼、実体顕微鏡、SEMにより根面を観察するとともに、DNAを抽出して各種微生物の群集構造を解析した。根の伸長と崩壊過程、根面微生物の生育状況は、1）冠根と分枝根は伸長中で白色、ムシゼルムを観察、微生物の生育はほとんど見られず、2）分枝根は伸長、水酸化鉄の沈着で茶褐色を呈し、表面細胞群の浸透中に微細な菌糸が生じ、3）冠根と分枝根が伸長停止、水酸化鉄の沈着で根面は褐色、微生物が根面、表皮細胞、外皮細胞内に侵入、4）根は暗褐色または透明系、表皮細胞、外皮細胞は崩壊、約14の段階で区分され、各‘要素根’は1から4の過程を経て、各時期の水稲根系では、下位の‘要素根’ほど進んだ段階に達していた（31）。

各生育時期における真菌細菌群集は、上位‘要因’（若い根）から下位‘要因’（古い根）に向けて規則的に変化し、水稲根にはグラム陰性細菌が優占して生じていた。また、多くの‘要因’が好気性好気細菌と好気性嫌気性細菌が共生して見出され、水稲根は酸化の部位と還元の部位が混ざり合う不均一な環境であると推察された。また古い根から古い根に向って、嫌気性細菌の割合が増加するのを観察され、水稲根における還元的部位の増加が示唆された（31）。

アノモニア酸化細菌としてNitrosospiraが優先すること、また、還元化が進行した古い根にもNitrosospiraが見出されることより、古い根にも酸化的部位の存在が確認された（27）。

他方、メタン生成古細菌の研究から水稲根には特定のメタン生成古細菌（Methanothermobacterium, Rice cluster I）が生息
 Flourishing in water rice and its soil microbial community in the early stage of leaves and leaf sheaths, and its effects on the carbon cycle and microbial community structure during this period have been studied. The results indicate that the microbial community in water rice is significantly different from that in land rice, and the microbial community in water rice is more diverse and active. The microbial community analysis showed that the dominant microorganisms in water rice are bacteria, with a high proportion of Proteobacteria. The microbial community structure in water rice is closely related to the environmental factors, such as water content, temperature, and nutrient availability, which affect the microbial community structure and function.
表に従って実験していることが特徴として挙げられた（図4）62）。

同様に、各部位から抽出したDNAを用いて微生物の
群集構造を比較した結果、微生物群集のDGGGバンド
の数とバンド位置の変動から推定した多様性と安定性は、
作土と土壌中の細菌ワラビ配を高く、ミシシカや土壌表面
に放置された瓦ラビで低かった。同様の多様性は、塩基
配列から推定した微生物群集の異なる門（phylum）や
細菌クラス（class）の数からも推定された63）。加えて、各試料
のDGGGバンドの塩基配列と201の標準塩基（type cultures）
の塩基配列との類似性をそれぞれ求め、その類似性ベクト
ルを試料間で比較した結果、各部位に系別分類学的に異な
る微生物群集が生じていることが判明した。従って、
ここに取り上げた部位では特に微生物群集が
安定して生じ、いずれの部位でも水田生態系の微生物群集
の多様性と安定性の維持に寄与していると結論した。

2）田面水中の水生生物群集

水田田面水中の水生生物は淡水に伴って出現・増殖し、
落水により姿を消す。各地域の田面水中の30μm～2
cmのすべての水生生物を主に目（order）のレベルで分類
し、各分類群の個体数を数計した結果、水稲作付け期
間に40種類の分類群が田面水中で観察され、落水期間後
半（落水後50日目以降）になると分類群数が増加すると
とともに水生微生物群集の多様性も変化した64,65）。なお、落水後
50日目頃に急に干しになった水田においても同様
の構造変化が観察されることが56）。水稲稈周辺に落水後期
を特徴付ける生物群集が多く観察されたことより57）、水
稲の生育が水生微生物群集構造の季節変動を促す要因の一つ
と推察される。また、田面水と淡水部分の水生生物群集は互
いに異なり、田面水中で特有の生物群集構造が確立してい
ると判断された68）。

8ヶ月におよぶ冬期横水中間期、水田水生物はその生
育部位を奪われる。そこで、土壌、水稲耕株、田面周辺
に放置された稈稈をそれぞれ採取し、これら試料を実験室
内で湛水・観察・出現する水生生物を実体顕微鏡下で観察
した結果、湛水期間に観察された多くの水生生物がいずれ
かの部位で観察され、田面水中の多くの水生生物が長
い落水期間を田面陸場内で越冬すると推察された69）。加
えて、田面水に投入する肥料の種類や量60）、農薬60）によっ
ても、水生生物群集構造に変化が見られた。

3）水田土壌のウイルス群集

この20年あまりの間に、ウイルスが生物地球化学的物
質循環や遺伝子の宝庫として認知されることが、海洋や湖
沼における精力的な研究から明らかとなり、水環境における
ウイルス生態学は新たな時代を迎えた。他方、土壌中の
ウイルスの生態に関する研究はほとんど手つかずの状態に
ある。そこで、安政環境技術センター内の長期肥料処理実
験圃場から田面水を採取しウイルス数を顕微鏡下で計
数したところ、5.6×10^6～1.2×10^9Ml1（平均15×10^9
Ml1）で、田面水の深さの上昇に伴い増加し、ウイルスの
多くが土壌粒子に吸着して存在することが判明した。また、
これまでは水環境で報告されているウイルス数に比べて、
田面水中のウイルス数が多いことも明らかとなった61）。次
いで、透過型電子顕微鏡（TEM）でウイルスの形状を観察
し、その形態からCaudoviralesに属するファージ（細菌に感
染するウイルス）が田面水中の主要なウイルスと推定した62）。
倍率を上げて細菌をTEMで観察すると、溶菌性ファージ
が感染した細菌を非感染の細菌と識別でき、16～36\%
の細菌体内にファージの存在が観察されたことから、田面
水中の細菌の13～35%が溶菌性ファージの感染によって
死滅し推定した63）。

また、系統的に広い範囲に属する細菌18株を宿主とし
て希釈頻度法により感染するファージの数を調査した結
果、全ての田面水試料中には、いずれかの細菌に感染す
るファージが存在し、Sphingomonas sp, Enterobacter sp,
Cytophaga sp, Microbacterium sp. に感染するファージは、落水
期間中に田面水で頻繁に出現し、その数は10^7～10^8Ml1
に及ぶこともあった64）。

これまで、ウイルスの分子生態学的研究が発展しなかっ
た理由として、原核生物における16S rDNA、真核生物に
おける18S rDNAのようなウイルスに共通する遺伝子の存
在しないことが指摘されてきた。しかし、一部のウイルス
に共通して存在するいくつかの遺伝子が近年見出され、海
洋を中心にウイルスの分子生態学の研究が目覚しく進んでいる。
中でも、T4型ファージのカプセル遺伝子g23を用い
た研究が最も多く行われてきたことから、田面水や土壌から
抽出したドライを用いてg23遺伝子を解析した。

東北農業研究センター大仙試験地（灰色低地土）、青森
県農林総合研究センター（黒ポト低地土）、富山農業研究
センター（黄色土）、九州沖縄農業研究センター（筑後試験
地（灰色低地土））の土壌土壌から得られたg23遺伝子の多
くは、これまでに海洋や大腸菌群から分離されたg23遺伝
子とは塩基配列が大きく異なり、6つのグループに大別され
、地域間の違いが認められなかった65,66）。

更に、中国東北部の黒龍江省周辺の水田から水田土壌を
採取し、そのg23遺伝子を比較した。調査した13の水田
土壌中のg23遺伝子の多くは水田土壌の塩基配列を示し、
これまで帰属が明らかでなかったわが国の水田土壌か
ら得られたg23クローンと新たに2つのグループを確立
するとともに、地域間に特有のグループも見出された（図
5）68）。加えて、堆肥化過程の堆肥ウラ69）、2つの水田土壌
断面の各層位に存在するg23遺伝子69）を調査したところ、
いずれもその多くが水田土壌特有の塩基配列を示したこ
の結果から、「世界の水田土壌中には土壌に特有のT4
型ファージ群集が存在し、世界的水田土壌に共通のT4型
ファージ群集とその地域の水田土壌に固有のT4型ファージ
群集から構成されている」と推論した。

あとがき

このたび、日本土壌微生物学会、日本土壌微生物学会の推
薦をいただき、平成21年度日本農学賞受賞者の方略に浴す
る機会に恵まれた。謹んで、大伏せ之前会長を初め学会関
水田土壌における炭素循環と微生物群集

図5 水田土壌中のg23遺伝子と大腸菌ファージや海洋中のg23遺伝子の比較

係者に感謝を申し上げる。本稿は、受賞対象となった研究をまとめたものである。これまで一貫して水田土壌生態系の解明を目的に、微生物学、生化学的研究に没頭し今日に至った。一連の研究を振り返るとき、高井康雄、川田信一郎、和田秀徳各先生をはじめとする多くの先生方のご指導・ご鞭撻を励みとして研究の骨格が形成され、名古屋大学土壌微生物化学研究室の教員、卒業生各位の優れた研究成果を基に結実した。ここに記して謝意を表す。

要旨

水田の高い肥沃性とメタンの発生はともに、水田における有機物の供給とその微生物群集による分解に深く関わっている。本研究では、雑草や水稲刈り残根、根由来有機物が水田における主要な有機炭素源であること、その微生物分解と生成した二酸化炭素による栄養塩類の保留からの溶脱、土壌微細なる微生物からの浄化と下層土への蓄積の機構を明らかにするとともに、根由来有機物が水田から発生するメタンの主要な炭素源で、生成したメタンが土壌中で様々な過程を経ることを明らかにした。水田土壌中には、様々な微生物群集（部位）が存在する。そこから、それぞれが部位に生息する微生物群集の全体像をリン脂質脂肪酸組成から解析し、各部位から抽出したDNAのPCR - DGGGパターン解析から微生物群集の多様性を、DDGEバンドの塩基配列から群落構造を明らかにした。また、水稲根面、稲や稲表面の微生物群集を走査型電子顕微鏡で観察し、さらに田面水中に生息する水生生物を主に目レベルで同定した。加えて、水田のウイルス群集についても調査し、ウイルスが水田土壌中の重要な微生物群集の構成要素であり、多くが新奇のウイルスであることを明らかにした。

引用文献

1) 木村真人・高井康雄（1984）水田における有機物の供給と分解、微生物生態研究会編「微生物の生態12 - 有機物負荷と環境浄化 - 」pp.41-60，学会出版センター

2) 木村真人・田中靖浩・和田秀徳・高井康雄（1980）水田開発における粗大植物遺体の分解過程（第1報）粗大植物遺体の重量および炭素量の経時的变化，土壌誌，51, 169-174

59) Yamazaki M, Hamada Y, Kamimoto N, Momii T and Kimura M

