HOTSPOTS SITES FOR GLYCATION OF HUMAN SERUM ALBUMIN AND EFFECT ON FUNCTIONAL ACTIVITY AND DEGRADATION

Naila Rabbani and Paul J Thornealley
Protein Damage and Systems Biology Research Group, Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, University Hospital, Coventry CV2 2DX, U.K.

Albumin is susceptible to glycation by glucose and reactive dicarbonyl glycating agents such as glyoxal, methylglyoxal and 3-deoxyglucosone (3-DG). Glycation of human serum albumin (HSA) by glucose in vivo forms glucose-derived Schiff's base and N\textsubscript{\alpha}-fructosyl-lysine (FL) residues. Degradation of fructosamine residues and glycation by reactive dicarbonyl metabolites forms advanced glycation endproduct (AGE) residues. In human subjects, steady state concentrations of glycation adduct residues in albumin (mol% total albumin) are: early glycation adducts - glucose-derived Schiff's base 1 - 5%, and FL 6 - 15%; and AGEs - hydroimidazolones, 2 - 7%, N\textsubscript{\alpha}-carboxymethyl-lysine (CML) 0.2 - 0.6%, N\textsubscript{\alpha}-carboxyethyl-lysine (CEL) 0.1 - 0.3%, glyoxal and methylglyoxal-derived bis (lysyl)imidazolium crosslink GOLD and MOLD 0.05 - 0.3%, and pentosidine 0.005 - 0.02%

Glycation of by glucose forms FL residues mainly at lys525, lys439, lys199 and lys281. The most reactive site is lys525 where 33% of fructosamine adducts are present. These FL residues degrade oxidatively to form CML residues at the same sites. Methylglyoxal reacts with HSA to form mainly the hydroimidazolone AGE, N\textsubscript{\alpha}-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1), with minor formation of CEL, MOLD and argpyrimidine residues. MG-H1 residue formation occurs on arg114, arg186, arg218, arg410 and arg428 with the hotspot of modification at arg410. Arg410 is located in drug binding site II and the active site of albumin-associated esterase activity. Hydroimidazolone formation at arg410 inhibits drug binding and esterase activity.

Glycation of HSA by the minimal extents found in vivo does not decrease the half-life or enhance degradation. With much higher, supraphysiological extents of glycation, as often found in HSA glycated in vitro, lead to scavenger receptor recognition and rapid removal of the highly glycated HSA from circulation in the liver. Removal of minimal glycated HSA in vivo rather appears to occur via uptake and proteolytic degradation in the kidney and other tissues with release and urinary excretion of mainly glycated amino acids (glycation free adducts) thereby formed and minor amounts of HSA-derived glycated peptides.

References: