NMR 分光法による水評価

大河内 正一* 石原 義正* 荒井 強* 上平 恒*

17O- and 2H-NMR of Drinking Water

Shoichi OKOUCHI*, Yoshimasa ISHIHARA* Tsuyoshi ARAI* and Hisashi UEDAIRA*

* Mechanical Engineering, College of Engineering, Hosei University, 3-7-2, Kajino-cho, Koganei-shi, Tokyo 184 Japan

Abstract

The line width (half width) of 17O magnetic resonance and spin-lattice relaxation time, T1, of 17O and 2H nuclei were measured for pure water at 298 K by NMR spectroscopy. The values of T1 for 17O and 2H nuclei in the water were constant in the pH range of 1 to 13, whereas the broadening of 17O-half width occurred in the pH range of 5 to 9. The rotational correlation times of 17O and 2H nuclei calculated from the T1 values agreed well with those so far reported. Therefore, the rotational movement of the water molecule is independent of pH. The broadening of half widths depends on the exchange rates of proton in water and the coupling between 17O and 2H. These exchange rate constants and coupling constant were estimated from the broadening data. The values of T1 for 22 kinds of commercial natural water contained to about 1.5 -650 ppm (mg·dm-3) as CaCO3 hardness agreed well with T1 for the pure water, while the half widths fitted on the curve of half width-pH obtained from the pure water. From these results, the half widths for pure water and ordinary natural water can not use as the factor for a size of water clusters suggested by Matsushita.

Key words: 17O-line width, spin-lattice relaxation, proton exchange rate, coupling constant, water cluster

1. 體 言

近年, “おいしい水”, “名水”などと水が注目されてい
る。このことはわが国の河川、湖、地下水などの汚
染が進行し、世界に誇った日本古来よりの良質水を失
われつつある証拠でもある。環境庁は1985年に “名水
百選”を選定し、良質の水資源および水環境の確
保に努めている。しかし、水道水のカルキ臭、カビ臭、赤
水さらには健康への不安を与える発ガン性が問題と
となっているトリハロメタンの生成は大きな社会的関
心を呼んでいる。トリハロメタンだけでなく、これまで
に飲料水の水質と健康との関係について、アルカリ度
および硬さ成分と脳卒中および心臓病などの循環器疾
患による死亡率が逆相関関係にあり、さらに pH と寿
命との関係では pH が酸性側で短命などの報告が
されてきている。生活の豊かさにもとづって健康面も
含めてよりおいしい水への要求は家庭用浄水器および
ミネラル水の需要を急速に伸ばす原因となってい
る。

そこで今日、水に対して安全性は当然として、さら
に健康によい水、よりおいしい水についての水評価法
が求められてきている。これまでの水評価法として,
論 文

橋本らは全国各地の評判の水を分析し、“きき水”（官能テスト）よりおいしい水指標（OI）、および長寿村における飲料水の水质データの解析より健康にいい水指標（KI）をそれぞれ(1)，(2)式に示す溶解ミネラル成分との関係で提案している。

\[
OI = \frac{[Ca] + [K] + [SiO_2]}{[Mg] + [SO_4]} \geq 2.0 \quad (1)
\]

\[
KI = [Ca] - 0.87[Na] > 5.2 \quad (2)
\]

それゆえ、OI および KI 値が、それより 2.0 および 5.2 以上ない水はおいしさと健康を兼ね備えた水ということになる。

一方、松下らは水分子の動的構造を表すものとして \(^{17}\)O-NMR スペクトルの半価幅を用いた水評価法を提案している。一般の水溶液では、水の分子運動が速くextreme narrowing condition（\(\omega_r^2 \tau_c^2 \ll 1\）、\(\omega_r\)：共鳴周波数、\(\tau_c\)：回転相関時間）が成立(11)することから、スピノー-格子緩和時間 \(T_1\) とスピノー-スピノ緩和時間 \(T_2\) が等しいと仮定できる。それゆえ、NMR スペクトルの半価幅 \(Hw\) は回転相関時間 \(\tau_c\) と(3)式に示す比例関係が成立する。

\[
Hw = \frac{1}{\pi T_1} = \frac{1}{\pi T_2} \propto \tau_c \quad (3)
\]

松下らは(3)式から、水の \(^{17}\)O-NMR スペクトル半価幅 \(Hw\) を測定することにより、\(\tau_c\) の大きさが判断でき、さらに水の種類による \(\tau_c\) の変化は Fig.1 に模式的に示す水分子が水素結合でつながったクラスターの大きさを示すものと判断した。そして、長寿村の水（アルメリア共和国）、天然湧水、井戸水、ミネラル水などの種々の水を \(^{17}\)O-NMR 半価幅で測定した結果、半価幅の小さい水、すなわち、水分子クラスターの小さい水が味および健康にいいくらい水としている。とくに最近、水ブームを反映して後者による水評価が注目されてきている。

しかしながら、これまで \(^{17}\)O 核を用いた NMR の半価幅は、Meiboom14をはじめとした研究者15-20によって \(^{17}\)O とプロトンとのカップリングの影響が指摘されてきている。すなわち、カップリングの影響により半価幅が大きくなる。しかし松下らの \(^{17}\)O-NMR 半価幅を用いた水指標では、この点がまったく検討されていないようにと思われる。そこで、本研究ではカップリングの問題をふまえて、NMR による水評価法の基礎データを得る目的で実験を行った。

2. 実験

精製水（日本薬局方イオン交換蒸留水、以後本論文では純水とよぶ）の pH を変化させて、\(^{17}\)O 半価幅 \(Hw\) および \(^{13}\)O, \(^{2}\)H 核の \(T_1\) を NMR (JMN—EX270) で測

![Fig. 1 Scheme of water clusters](image)

![Fig. 2 Line width of \(^{17}\)O-NMR signals (a) and \(^{2}\)H-NMR signals by the inversion recovery pulse sequence (b)](image)
定した。共振周波数はそれぞれ17O では36.63MHz, 1H では41.47MHzで、測定温度は25℃である。pH の調整は塩酸および水酸化ナトリウムを用いて行った。pH 値は測定前後に測定値（最大でpH0.20の変動）を採用した。Fig. 2 に代表的な17O-半価幅測定および回転回復法による17O 核の T_1 測定（17O 核の T_1 に対して同様）に対する NMR スペクトル例を示す。半価幅は Fig. 2(a) の信号ピークの高さの1/2の幅を、T_1 は Fig. 2(b) の信号ピークの経時変化に対する勾配の傾きより決定した。また、半価幅および T_1 に対し溶解成分（ミネラル）の影響を検討するため、Table 1 に示す溶解成分分類に有する市販ミネラル水（国産11種および外国産11種）を用いて精製水と同様の実験を行った。ただし、pH の調整には二酸化炭素ガスを用いた。

3. 結果および考察

3.1 純水の半価幅および T_1 と pH の関係

Fig. 3 に純水について、17O-NMR 半価幅 H_w よりおよび17O 核のスピン-スピール緩和時間 T_1 と pH の関係を示す。Fig. 3 から、半価幅は酸性およびアルカリ性では一定値となるが、中性付近（pH 約5〜9）では pH を極大値として急激に大きく変化する結果が得られた。この結は Meiboom$^{[4]}$ よび Halle$^{[5]}$ の結果の傾向とよく一致している。一方、17O および1H 核の T_1 については pH によらず一定値（測定誤差はいずれも3％以内）を示した。Fig. 3 の H_w-pH 曲線は後に述べる非線形最小2乗法より求めた計算値、また2本の平行線は17O および1H の T_1 の平均値をそれぞれ示す。T_1 の平均値、すなわち17O 核では7.10msおよび1H 核では525msを用いて水分子中の17O および1H の回転相関時間 τ_c を(4式)$^{[10]}$に従って計算した。

$$ \frac{1}{T_1} = 3 \frac{(21+3)}{40} \left(1 + \frac{\eta^2}{3}\right) \left(\frac{e Q}{h}\right)^2 \tau_c \quad (4) $$

ここで、I：スピン量子数（1H：1，17O：5/2），η：非対称パラメータ（1H：0.11，17O：0.93）$^{[21]}$，（$e Q/h$）：四極子結合定数（1H：1.39×104，17O：4.20×104）$^{[22]}$。その結果，17O および1H 核とともに回転相関時間 τ_c は2.6×10$^{-12}$sとなり，文献値$^{[23]}$の2.5×10$^{-12}$sとよく一致した。これは水分子の1H，1H および17O 核の τ_c はいずれもほぼ同じ値を有し，それゆえ，水分子の回転運動は等方的であるとこの結果$^{[24]}$を支持する。したがって，T_1 測定の結果は水分子がpH に依存せず一定の回転運動をしていることを示す。しかし，半価幅の結果は，(3)式に従うとすると，pH が酸性およびアルカリ性側に比較して中性付近で半価幅が大きくならないことから水分子の回転運動が大幅に抑制されることを意味する。この半価幅が中性付近で大きくなる原因について，Meiboom$^{[4]}$および Halle$^{[5]}$は(5)式に示すプロトンの交換速度が中性付近で遅くなり，17O およびプロトンとのカップリングの影響が強まることによると報告している。そのため中性付近での半価幅について(3)式が成立しなくなる。

Table 1 Contents in commercial natural water

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>domestic (11 kinds)</td>
<td>1.1-66</td>
<td>1.0-46</td>
<td>2.3-73</td>
<td>0.3-23</td>
<td>6.4-355</td>
<td>5.9-8.3</td>
</tr>
<tr>
<td>foreign (11 kinds)</td>
<td>0.6-202</td>
<td>0.03-24</td>
<td>0.3-12</td>
<td>0.1-5.4</td>
<td>1.5-655</td>
<td>7.0-7.9</td>
</tr>
</tbody>
</table>

*: CaCO$_3$ hardness

Fig. 3 The effects of pH on the 17O-half widths, H_w, and on the spin–lattice relaxation time, T_1, of 17O and 1H at 298 K. curve：estimated from Eqs. (6) and (7), horizontal lines：average value of T_1.

Vol.16 No.6(1993)
ここで、k_1 および k_2 は速度定数（$\text{dm}^3\cdot\text{mol}^{-1}\cdot\text{s}^{-1}$）。
このカップリングの影響を Halásらは(6)式に示すスカラー緩和速度 R_s によるとしている。

$$R_s = 4\pi^2\eta_n \tau_s = \pi \eta \mu W - R_q$$ (6)

ここで、J_{on} は ^{17}O とプロトンとのカップリング定数、τ_s：(5)式に示すプロトンの交換時間、R_q：核四極子緩和速度。τ_s はプロトンの交換速度が水分子の O の回りに滞在するプロトンの平均滞在時間に関係し、それゆえ(7)式に示すプロトンの平均滞在時間 t_{av} と等しくなる。これは、プロトンの滞在時間に対して O の滞在時間が1/2になることは水分子の O と H の割合に対応することによる。

$$\tau = \left[\frac{1}{3} k_2[H^+] + \frac{1}{2} k_2 kW/[H^+] \right]^{-1}$$ (7)

ここで、k_W：水のイオン積。Fig. 3 に示す H_w--pH 曲線は ^{17}O の半価幅のデータを(6), (7)式を用い非線形最小2乗法より決定したものである。図から明らかのように、計算値と実験値はよく一致する結果が得られた。非線形最小2乗法より決定された速度定数 $k_1 = 9.3 \times 10^{10}\text{dm}^3\cdot\text{mol}^{-1}\cdot\text{s}^{-1}$, $k_2 = 4.5 \times 10^{9}\text{dm}^3\cdot\text{mol}^{-1}\cdot\text{s}^{-1}$ よび $J_{on} = 83.0\text{Hz}$ は、これまで報告されてきた Table 2 に示す、k_1, k_2 および J_{on} の値の範囲におさまる結果を示した。Fig. 4 には(7)式より算出した水分子の O のまわりに滞在するプロトンの平均滞在時間 τ およびその逆数、すなわちプロトンの交換速度の逆数 (log (1/ τ)) と pH の関係を示す。中性付近でプロトンの交換速度は急激に遅くなり、そのため ^{17}O とプロトンとのスピン間での相互作用が大きくなることを意味する。それゆえ、^{17}O の半価幅は pH に強く依存した水分子のプロトンの交換速度および ^{17}O とプロトンのカップリングの影響として説明でき、水分子クラスターの大小を示すものではないことが明らかである。

3.2 溶解成分（ミネラル）の影響

次に溶解成分の影響を純水の代わりに、Table 1 に示す CaCO₃ 硬度として约1.5～650ppm までを含む市販のミネラル水を用いて検討した。これらのミネラル成分は探索水を含む地域等の水の履歴環境を反映したものとなる。Fig. 5 にそれらの結果を示す。ミネラル水の半価幅は Fig. 3 に示す純水での H_w--pH 曲線上に分布し、一方 T_r について^{17}O およびH 核ともに純水と示す値を示した。Fig. 6 にはミネラル水の pH を変化させた場合の半価幅および T_r 値の変化の様子を一例として示す。初期 pH8.30, 硬度150ppm のミネラル水に二酸化炭素ガスを吹き込み、pH をアルカリ性→中性→酸性に移行させた。それにしても半価幅は Fig. 3 の純水での H_w--pH 曲線に沿って変化し、T_r 値は ^{17}O およびH 核ともに変化せずに純水での平均値に沿って水平方向に移動した。溶存二酸化炭素の真空中脱気した場合も、pH 値の変動にともない半価幅は Fig. 3 の H_w--pH 曲線上に沿って変化するが、T_r は変化せず一定値を示した。以上の結果から、Table 1 に示す溶解ミネラル成分を含む水についても、純水と同一の結果を得た。そこで、溶解ミネラル成分が半価幅および T_r にどのように影響するかについて、これまでに報告されているイオンの回りの水和圏における水の回転相

Table 2 Proton exchange rate constant, k_1, k_2, and ^{17}O--H coupling constant, J_{on}

<table>
<thead>
<tr>
<th>k_1×10⁻⁹</th>
<th>k_2×10⁻⁹</th>
<th>J_{on} Temp.</th>
<th>Ref. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>[dm³•mol⁻¹•s⁻¹]</td>
<td>[dm³•mol⁻¹•s⁻¹]</td>
<td>[Hz]</td>
<td>[K]</td>
</tr>
<tr>
<td>10.6</td>
<td>3.8</td>
<td>92</td>
<td>298</td>
</tr>
<tr>
<td>11.0</td>
<td>5.5</td>
<td>298</td>
<td>15</td>
</tr>
<tr>
<td>10.2</td>
<td>2.8</td>
<td>298</td>
<td>20</td>
</tr>
<tr>
<td>7.9</td>
<td>4.5</td>
<td>298</td>
<td>16</td>
</tr>
<tr>
<td>8.2</td>
<td>4.6</td>
<td>82</td>
<td>302</td>
</tr>
<tr>
<td>10.4</td>
<td>3.4</td>
<td>81.1</td>
<td>301</td>
</tr>
<tr>
<td>15.0</td>
<td>4.7</td>
<td>83</td>
<td>307</td>
</tr>
<tr>
<td>9.3</td>
<td>4.5</td>
<td>83</td>
<td>298</td>
</tr>
</tbody>
</table>
NMR分光法による水評価

関時間\(2^{223}\)を用いて検討する。
水1 kgに塩mモルを溶解したとき、水溶液および
純水中での水の回転相関時間比\(\tau_\text{c}/\tau_\text{e}\)と濃度mの関
係は(8)式で与えられる。

\[
\frac{\tau_\text{c}}{\tau_\text{e}} = 1 + \nu^* n^* \left(\frac{\tau_\text{c}}{\tau_\text{e}} - 1 \right) + \nu^{-} n^{-} \left(\frac{\tau_\text{c}}{\tau_\text{e}} - 1 \right) \frac{m}{55.5}
\]
(8)

ここで、\(\nu\)：塩1モルが解離して生ずるイオンのモル数、\(n\)：イオンの水和数。上付きの+および-はそれぞれカチオンおよびアニオンを表す。\(\tau_\text{c}/\tau_\text{e}\)および\(\tau_\text{c}/\tau_\text{e}\)は、カチオンおよびアニオンのまわりの水和圏にお
ける水分子の回転相関時間とパルク水（純水）中での
水分子の回転相関時間の比を示す。\(\tau_\text{c}/\tau_\text{e}\)が1より大
きい場合はイオンの回りの水分子はパルク水での水分子
と比較してイオンの影響によりその熱運動が抑制さ
れ、逆に1より小さい場合はその運動が促進されること
を意味する。前者は正の水和、後者は負の水和とし
ても知られている。(8)式の回転相関時間の変化率を\(\alpha\)
として、溶解成分（ミネラル）濃度をmの代わりに
Wppm (mg·dm\(^{-3}\))として表すと、(9)式を得る。また、
\(\alpha\)は(4)式より\(T_1\)の変化率として、さらに(3)式が成立す
る場合は半値幅の変化率としても(9)式のように表すこ
とができる。したがって、回転相関時間比、水和数等
の値が既知の塩については\(T_1\)および半値幅\(H_w\)の濃
度依存性による変化率\(\alpha\)が計算できる。

\[
\alpha = \frac{\tau_\text{c} – \tau_\text{e}}{\tau_\text{e}} = \frac{T_1^0 – T_1}{T_1} = \frac{H_w – H_{w_0}}{H_{w_0}}

= \left\{ \nu^+ n^+ \left(\frac{\tau_\text{c}}{\tau_\text{e}} - 1 \right) + \nu^- n^- \left(\frac{\tau_\text{c}}{\tau_\text{e}} - 1 \right) \right\}

\frac{18\rho}{M(10^6/W+1)}
\]
(9)

ここで、\(\rho\)：水溶液の濃度、\(M\)：分子量。Fig. 7に淡水お
および飲料用の水に一般的に含まれている主要カチオ
ンの\(\text{Ca}^{2+}\)、\(\text{Mg}^{2+}\)、\(\text{Na}^+\)、\(\text{K}^+\)、およびそれらの塩化物
について、(9)式より計算した結果を示す。計算に用い
たイオンの回転相関時間比\(\tau_\text{c}/\tau_\text{e}\)および水和数\(n^±\)を

Table 3 Ratio, \(\tau_\text{c}^\pm/\tau_\text{e}^0\), of the rotational correlation
time of water molecule in the hydration
sphere of ion to that in pure water, and the
hydration number of ion, \(n^\pm\)

<table>
<thead>
<tr>
<th>ion</th>
<th>(\tau_\text{c}^\pm/\tau_\text{e}^0)</th>
<th>(n^\pm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Ca}^{2+})</td>
<td>3.5</td>
<td>6</td>
</tr>
<tr>
<td>(\text{Mg}^{2+})</td>
<td>5.2</td>
<td>6</td>
</tr>
<tr>
<td>(\text{Na}^+)</td>
<td>1.6</td>
<td>8</td>
</tr>
<tr>
<td>(\text{K}^+)</td>
<td>0.9</td>
<td>8</td>
</tr>
<tr>
<td>(\text{Cl}^-)</td>
<td>0.9</td>
<td>6</td>
</tr>
</tbody>
</table>
Fig. 7 The effects of the concentration of salts and ions, W, on α

Table 33) 4) 5)に示す。Ca^{2+}, Mg^{2+}, Na^{+} では濃度の増加にともない α は大きくなら水分子の運動は抑制されるが、逆に K^{+} および Cl^{-} ではマイナスの変化率となります水分子の運動が活発化していることを示す。それゆえ、正の水和をする上記カチオンの塩化物が水に溶解した場合、塩素イオンは負の水和をすることから、α を低下させる方向にすなわち、実測される T_1 および Hw 値は純水の場合と比較してそれらの差がより小さくなる方向に作用することがわかる。α を10%変化させる、すなわち塩酸塩により T_1 および Hw を純水と比較して10%変化させることで Fig. 7 から明らかなように約 1万 ppm 以上の塩が水に溶解している必要がある。しかしながら、通常の飲料水では硬度として1,000ppm 以下と考えられ、まして渋みや苦みの原因成分となるマグネシウムでは10ppm の濃度でも不快な味を感じる人もいる。したがって、1,000ppm 以下の通常の飲料水では T_1 および Hw の変化率は測定誤差範囲内となり、純水の場合と比較して変化しないと考えられる。実際に CaCl_2, MgCl_2, NaCl および KCl について、濃度を1,000ppm に調整し測定した結果、T_1 値はいずれも誤差範囲内で純水と同じ値となった。しかし、Hw の変化については pH によって決まり、Fig. 3 に示す純水の Hw—pH 曲線により説明することができた。本来なら、Fig. 7 には塩化物より炭酸水素塩を用いて計算すべきであるが、HCO_3^- の r_1/r_2 および水和数 n^* のデータがこれまでに報告されていないためである。そこで HCO_3^- の影響をみるため炭酸水素ナトリウムを5,000ppm までの濃度に調製し検討したが、変化率 α 値はほとんどゼロとなり、それゆえ、1,000ppm 以内の濃度では他の炭酸水素塩でも α 値に特に大きな変化をもたらすことはないと推測できる。

4. まとめ

水の評価法として松下らが提案している^{17}O 一NMR 半価幅について純水および市販のミネラル水を用いて検討した。
1）純水の pH を1 〜 13に変化させて^{17}O 半価幅および^{13}O、^{3}H 核での T_1 を測定した結果、T_1 は pH により変化しないが、半価幅は pH 5 〜 9 で広くなる。
2）T_1 値から回転相関時間を計算した結果、^{17}O および^{3}H 核ともに同じ値が得られ、これまでの文献値とも一致した。それゆえ、水分子の回転運動は pH の影響をうけにくいという結果を得た。
3）半価幅が中性付近で変化する原因を Meiboom、Halle らはプロトンの交換速度および^{17}O とプロトンのカップリングの影響として報告しているが、本研究の結果も同様に説明でき、プロトンの交換速度定数およびカップリング定数を決定できた。
4）溶液成分（ミネラル）の影響を検討するため22 種の市販ミネラル水（CaCO_3 硬度として約1,5〜650 ppm）の半価幅および T_1 を測定した結果、半価幅は純水で得られた Hw—pH 曲線上のとおり、T_1 は純水と同じ値を示した。
5）これまでに報告されているイオンの図の水和圏における水の回転相関時間および水和数の値を用い計算した結果、通常の飲料水に含まれている主イオンに対して約1,000ppm 以下では純水と比較して回転相関時間および T_1 の変化は測定誤差内で観測できなかった。特に、Ca, Mg, Na, K の塩化物について1,000ppm の濃度で検討したが、T_1 については変化はみられず、一方、半価幅は pH で説明できた。

以上の結果から、通常の飲料水系では^{17}O 半価幅の大小は、pH に依存したプロトンの交換速度および^{17}O とプロトンのカップリングの影響で、水分子クラッ
NMR分光法による水評価

21) 赤坂一之, 井上敏行(1990)パルスおよびフーリエ変換NMR（訳）, 75pp., 吉岡書店, 京都.
24) 上平恒(1991)生物物理工学(須賀新太郎編), 8pp., アイプリー, 東京.