Highly Efficient Domestic Wastewater Treatment for Detached Houses Using a Process that Combines Carrier Fluidized Biofilm Filtration and Iron Electrolysis

Yoshitake SATO*, Eiichi SUZUKI**, Keiji TEZUKA**, Shinichiro MIZUNO**, Masahiro IMURA** and Takane KITAO**

* FUJI CLEAN CO., LTD., 1-4 Imakita-4-chome, Chikusa-ku, Nagoya 464-8613, Japan
** FUJI CLEAN CO., LTD., Institute of Water Environmental Study, Yamahana 33, Yamayashiki-cho, Chiryu 472-0022, Japan
*** Toyohashi University of Technology, Higashi-ku, Tempaku-cho, Toyohashi 441-8122, Japan

Abstract

Practical application has been delayed regarding domestic wastewater treatment systems used in detached houses that are capable of removing nitrogen and phosphorus simultaneously. The authors have directed their attention to a process that combines carrier fluidized biofilm filtration and iron electrolysis. They studied a treatment system for removing nitrogen and phosphorus simultaneously in terms of its functions, and conducted the performance and verification tests.

The results confirmed that the treated water constantly showed a BOD and T-N of 10 mg/l or less, an SS of 5 mg/l or less, and a T-P of 0.7 mg/l or less on average, although the tests were conducted during a low-temperature period. The phosphorus removal system using iron electrolysis functioned properly during the test period, dissolving an almost theoretical amount of iron, thus contributing to the steady removal of phosphorus. The amount of sludge accumulated after completion of the study reached 13.0-21.6 g/m²-d, which corresponds to a 3.6-8.5 g/m²-d increase compared with other systems lacking a phosphorus removal system. It was confirmed that as much as a year's amount of generated sludge can be held in storage even with such an increase.

The present treatment system for removing nitrogen and phosphorus simultaneously was confirmed to be capable of maintaining its design performance. In the future, further investigations on subjects such as condition optimization will be necessary.

Key words: iron electrolysis, phosphorus removal, sludge volume, small-scale domestic wastewater treatment system

1. はじめに

我が国における公共用水域の中で、海原、内湾、湖沼などの閉鎖性水域では窒素、リンなどの栄養塩類の流入により富栄養化が進行している。閉鎖性水域の水質改善を図るためには、BODやCODなどの有機物質だけでなく、窒素やリンなどの栄養塩類の流入削減が必要不可欠になってきている①。

このような背景から、窒素、リン除去型生活排水処理システムが注目されている。既に中規模以上の浄化槽（処理対象人口50人以上）では、様々な処理方式の水素、リン除去型浄化槽が開発されている。しかし、小規模の浄化槽（処理対象人口5〜50人）では、脱窒接触懸浮気方式や脱藻懸浮気生物処理方式のような嫌気好気循環法による窒素除去型の浄化槽は存在するものの、リン除去型浄化槽はコスト面や維持管理面の問題で実用化が遅れていた。しかしながら、近年、小規模生活排水処理システムにおけるリン除去の研究②〜⑤は種々行われており、その中で鉄電解法⑥〜⑨の開発により、戸建て住宅用生活排水処理システム（処理対象人口5〜10人）において、利用可能となりつつある。

筆者は、すでに円筒形体を用いた溶体流動生物処理オーバルフローにより生活排水処理の効率化について究明⑩しており、本報では、この方式と鉄電解法を組み合わせた、窒
素・リン同時除去型の戸建て住宅用生活排水処理システムについて、その機能等について検討を加えた結果について報告する。

2. システムの概要

2.1 処理方式

水素・リン同時除去型戸建て住宅用生活排水処理システムの概要を Fig. 1 に示す。

このシステムは、一次処理に嫌気床槽、二次処理に嫌気流動生物浸透槽を採用し、処理槽からの硝化液循環による生物学的脱窒機能と嫌気流動生物浸透槽での酸化法による脱リン機能を組み合わせている。

また、嫌気床槽の上部を流量調整のための一時的な貯留槽とし、風呂水などの急激な流入変動に対しても各単位装置の滞留時間を極端に短縮することなく、処理機能を安定的に確保するための流量調整機能も組み込まれている。

2.2 嫌気流動槽と流量調整装置

家庭から排出される汚水（洗面、風呂、トイレ、洗濯など）は嫌気流動槽第1室に流入し、嫌気流動槽第1室内には嫌気層材として波状状層材を充填され、また、嫌気流動槽第2室には格柵状層材が充填されている。流入した汚水は固定分離と嫌気性処理が行われ、同時に嫌気水中的硝酸性窒素、亜硝酸性窒素の脱窒も行われる。

次に、嫌気流動槽で処理された汚水を移流用エリアフローポンプによって、嫌気流動生物浸透槽に移流される。嫌気流動槽第2室から嫌気流動生物浸透槽の浸透にはは戻らず、移流された汚水を内、循環水量および放流水量の差を戻し戻し嫌気流動槽第2室へ溢水して戻る。そして、循環水量と放流水量に相当する量の汚水が、嫌気流動生物浸透槽にて処理され処理水槽に移流する。また、処理槽底部より処理エリアフローポンプによって、嫌気層が嫌気流動槽第1室に移流される。循環移流量はおおむね4Q（Qは1日の追加入水量）を目安として移流する。循環による効果として、①反復の汚泥移流で取り除かれた団状物（処理水槽底部から）の除去。②DO（溶存酸素）を含んだ一定水深の浸透による過剰の嫌気性の防止。③嫌気流動生物浸透槽にて処理された硝酸性の嫌気流動槽での脱窒。④微生物浸透生物浸透槽での脱窒。2.3 嫌気流動生物浸透槽

嫌気流動生物浸透槽には、中空円筒形の樹脂が充填されていて、嫌気装置を介して、上部は嫌気処理を行う「好気部」で下部は無機物などの懸濁物の浸透を行う「浸透部」に分けられる。通常「好気部」では嫌気が行われ、流動する嫌気の表面に付着した微生物の働きのため、汚水中の有機物の分解、浄化とアンモニア性窒素の硝化が行われ、「浸透部」では静止している嫌気によって固体の浸透（固液分離）が行われる。

逆流運転は、プロポラ式に付属したタイマによって、設定時刻になると空気の吐出が嫌気逆流に切り替わり、嫌気流動生物浸透槽底部に取り付けられた逆流装置から空気吐出口が開かれて、槽内の交換が行われる。このようにして「浸透部」で捕捉された団状物を嫌気から脱脂させ、逆流し同時に汚泥移流用エリアフローポンプが作動し、嫌気底部における嫌気床槽第1室に送移する。なお、カルシウムの操作によって、逆流頻度や汚泥移流量は調節できる。

2.4 リン除去装置

嫌気流動生物浸透槽内水中に浸没された2枚の鉄板間の直流電圧を加えると電流が流れ、約3時間で電流が約2倍の鉄イオン（Fe²⁺）が溶出する。この鉄イオン水は水中の懸濁物質（Q₂）に混ざり、鉄イオン（Fe³⁺）に変わる。鉄イオン（Fe³⁺）は水中的リン酸イオン（PO₄³⁻）と反応してリン酸鉄（Fe₂PO₄）の沈殿物となり排水水中より分離される。渡過部で捕捉されたリン化物（考えられる）は逆流、汚泥移流によって嫌気流動槽第1室に送移され、貯留する。

鉄酸解法の運転では、鉄酸解を生物膜（汚泥）が付着し、鉄の溶解がしばしば阻害されることが起こる。このシステムでは、嫌気流動生物浸透槽を浸没させて運転し、鉄酸解が嫌気酸解浸透槽に浸没されているため、鉄酸解流動は常時嫌気と衝突し、生物膜の破裂が行われるため、鉄の溶解はスムーズに行われる。

リン除去装置の構成を Fig. 2 に、槽への取付状況を Fig. 3 に、装置の概要を Table 1 に示す。セルは主にプラック製のセルベース、鉄酸解および防水コネクタを付属電源ケーブルから構成され、鉄酸解は固定ボルトを介してセルベース内で電源ケーブルと接続されている。制御ボックスは鉄酸解の電流を供給するほか機械転換や各種の警報機能を電子制御により行う。
3. 試験方法

3.1 試験の概要

戸建て住宅用生活排水処理システムの設計基準の検証を行うために性能試験を、また、その妥当性を評価するために実証試験を行った。その概要を Table 2 に示す。試験は、リン除去装置の有無による差について検討を行うため、N 型（窒素のみ除去）と N-P 型（窒素・リン同時除去）を設置し、検討を行った。

性能試験は既設の汚水処理施設（設計水量：630 ㎥・d⁻¹）の敷地内に設置し、流量調整管から原水（1.4 ㎥・d⁻¹）を引き抜き試験槽に導入した。また、実証試験は各戸建て住宅の実際の排水を導入した。

なお、性能試験における原水の流入パターンは、(財) 日本建築センターの要領に従い、Fig. 4 に示す形状とした。運転パターンは、逆洗は 1 日 1 回 5 分間とし、流入のない 2 時間目、循環流量は 4Q を基本とした。

3.2 試験方法

(1) 現場調査

各試験槽の状態を調査するため、1～2 週に 1 回の頻度で流入水（性能試験のため、各種流出水の水温、pH, ORP, DO, 透明度の測定、塩分測定値）、温度、pH, ORP, DO, 透明度の測定、塩分測定値、および各種流量の測定を行った。

(2) 水質調査

月 1～2 回の頻度で流入水（性能試験のため、各種流出水、循環水、汚泥回収水を採水、分析した。工場排水試験法（JIS K 0102）及び下水試験法に準じて水質分析を行い、分析項目は、pH, BOD, COD, SS, NH₄-N, NO₃-N, NO₂-N, T-PO₄-P, T-P, およびアルカリ度とした。

(3) 終日調査

冬季（12 月～2 月）に終日調査をそれぞれ 1 回行い、BOD, 窒素およびリンの除去性能および流量調整機能について調査した。

Table 1 Outline of the Phosphorus Removal Apparatus

Theoretical Dissolution Electrode Weight	21.1 g・d⁻¹
Dissolution Ratio	90 %
Quantity of Electricity	72705 C・d⁻¹
Current	0.4～1.2 A
Volt	15 V
Polar Conversion	1 time・d⁻¹
Electrode Weight (2 cell)	3763 g
Electrode Plate Size	280×170 mm

* five positions

Table 2 Outline of the Test

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Performance Test</th>
<th>Verification Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Place</td>
<td>Sewage Treatment Plant</td>
<td>Household</td>
</tr>
<tr>
<td>Removal Type</td>
<td>N type</td>
<td>N-P type</td>
</tr>
<tr>
<td>Test Quantity</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Test Period</td>
<td>6 months</td>
<td>6 months</td>
</tr>
<tr>
<td>Maintenance</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Water Quality</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>All Day</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Sludge</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

Fig. 4 Influent Pattern

1 時間毎に各種の水温、pH, ORP, DO, 透明度と気温の測定を、また流入水、各種の流出水を採水し水質分析を行った。流量調査として 1 時間毎の循環水、汚流状態および循環水槽第 2 室の水位を測定し、流入パターンと流量調整機能について調査した。

(4) 汚泥調査

試験終了時に各槽内の汚泥貯留量を調査し、汚泥の分布を行った。分析項目は、pH, BOD, COD, SS, VSS, N-P, T-P, Fe とした。

4. 結果と考察

4.1 流量調整機能と処理性能

性能試験の実験調査における N-P 型の流入水量と放流水量の経時変化を Fig. 5 に示す。処理水の水質の経時変化を Fig. 6 に示す。

Fig. 5 より、急激な流入変動（ピーク係数 6）に対しても、放流水量のピーク係数は 1.2 以下で数時間以内も 23 時間以上続き平準化され、また Fig. 6 より、処理水質のピーク係数 6 の流量変動に拘らず、安定していることが確認できた。このことから、今回の流量調整方式によって、規模を超えた不規則な流入変動に対しても変動の緩和と処理機能の安定化が行われていることが明らかになった。

6 ヶ月の水質調査より流入水および処理水の水質分析結果の平均値（立ち上がり時の 1 ヶ月間を除く）と、それぞれの除去率を Table 3 に示す。リンを除いては、両種の処理水の平均値は BOD がそれぞれ 7.3, 7.1 mg・l⁻¹, SS は 3.5, 4.2 mg・l⁻¹, T-N は 7.6, 7.5 mg・l⁻¹ であり、設計除去率を十分に満足している。N 型の T-P が 2.3 mg・l⁻¹ であるのに対して N-P 型の T-P は 0.4 mg・l⁻¹ であり、リン除去装置が十分に機能しており、設計除去率を満足していることが確認された。
次に、実証試験において得られた処理水質を Table 4 に示す。N 型、N-P 型とも 1 年間の試験期間中処理性能を測定する結果となった。これは、N 型、N-P 型の各設計基準が十分であり、使用人員や使用水量に合わせた循環濃度、流量設定の設定、逆洗時間、逆洗時間、污泥送水量の設定、N-P 型においてはリン除去装置の鉄電極の設定、電極の反応等を適切に行え、処理性能を十分に発揮することを実証している。

4.2 窒素除去特性
性能試験における流入水および各種流出水の窒素形態別濃度を Fig. 5 に示す。流入水は有機性窒素とアンモニア窒素が大半を占め、NO₃-N はほとんど存在しなかった。また、担体浮動生物通過後流出水中では NH₄-N はほとんどなく、大部分が NO₂-N に硝化されていた。この担体浮動生物通過後流出水が循環水として 4Q(流入水量の 4 倍量)で嫌気浮床槽第 1 室に循環されるが、嫌気浮床槽第 2 室流出水中には NO₃-N はほとんどなく、これは嫌気浮床槽における脱窒作用が十分に進行していることを示している。

一般的に脱窒反応を行う場合は pH 調整および有機炭素源（例えば、メタノールなど）が必要であるが、生活排水の場合は流入原水中の BOD およびアルカリ度の存在によって、pH 調整や有機炭素源の供給は不要で、今回の実験でも一切の pH 調整およびメタノールなどの有機炭素源の供給を行わなかったが、窒素の除去（除去率：83%）は良好にわたった。

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Treated Water Quality of the Performance Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Influent</td>
</tr>
<tr>
<td>pH</td>
<td>7.3</td>
</tr>
<tr>
<td>BOD</td>
<td>183</td>
</tr>
<tr>
<td>COD</td>
<td>79</td>
</tr>
<tr>
<td>SS</td>
<td>176</td>
</tr>
<tr>
<td>T-N</td>
<td>44</td>
</tr>
<tr>
<td>T-P</td>
<td>3.5</td>
</tr>
<tr>
<td>T-Fe</td>
<td>0.3</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>129</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Treated Water Quality of the Verification Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>House Name</td>
</tr>
<tr>
<td>S</td>
<td>N-P</td>
</tr>
<tr>
<td>U</td>
<td>N-P</td>
</tr>
<tr>
<td>Kt</td>
<td>N-P</td>
</tr>
<tr>
<td>O</td>
<td>N</td>
</tr>
<tr>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>K</td>
<td>N</td>
</tr>
</tbody>
</table>

| Fig. 6 | Water Quality Change |

| Fig. 7 | Concentration by Nitrogen Type |

4.3 リン除去特性
性能試験 N-P 型における鉄電極の重量を測定し、減少した重量を溶解したものと考え、鉄電極溶出量の累積量の経日変化及び各種の T-Fe 濃度を Fig. 8 に、鉄電極の経日変化を Fig. 9 に示す。
1 日に 21.1 g 溶解するように電流値を設定していたが、電極の減少量から、1 日当たりの溶出量を逆算すると、グラフに示すように 18.8 g·d⁻¹ で溶解していることが確認された。これは、設定値に対して 99%であり、リン除去装置の溶出効率 90%を満足している。このように設定通りの鉄の溶出が行われているため、担体浮動生物通過後 T-Fe 濃度を 1 mg·l⁻¹ 前後で維持しており、有効にリンとの反応が推進していると推測できる。
各槽流出水のリン濃度より求めた各槽における 1 日当たりのリンの物質収支をFig. 10 に示す。T-P 流入量（4.9 g·d⁻¹）に対する除去量は 4.3 g·d⁻¹ となり、除去率は 88.6%となる。これに対して、槽内のリン総蓄存量を計算すると 690g となり、この値よりリン除去率を計算すると 77.8%となった。この差は、処理時に汚泥を十分に均一化できなかったことや、個々の計算に平均値を用いてい ることによる誤差等を考えられる。
Fig. 8 溶解及び蓄積の重量比、鉄濃度の時系列変化

Fig. 9 鉄電極の変動

Fig. 10 磷素物質収支図

通常の小型合併処理槽の処理水リリン濃度の平均値は 2.2～3.6 mg・l⁻¹ であるが、今回の N-P 型の鉄電解法による実験では、処理水リリン濃度の平均値は 0.4 mg・l⁻¹ を示した。この性能試験によって本装置ではリン除去が高度に安定的に行われていることが明らかになった。

4.4 汚泥特性

性能及び実験試験の汚泥調査を試験終了時に行い、発生汚泥量、BOD-SS 転換率および汚泥化により変化されるリンの割合を求め、その結果を Table 5 に示す。

汚泥の 1 日当たりの発生量は、性能試験が 1 年間のうちに実験試験が 1 年間の実験を行ったが、N-P 型では 13.0～21.6 dry-g・n⁻¹・d⁻¹、N 型では 9.7～13.6 dry-g・n⁻¹・d⁻¹ であった。また、除去 BOD の汚泥転換率は下式に

BOD-SS 転換率(%) = 種分値 SS 値 / (全流入 BOD 量 - 1 全放流 BOD 量) × 100

Table 5 より、N-P 型では 31.1～47.7%、N 型では 22.9～32.9% であった。なお、実験試験結果においては、設計値の流入水量 1.4 m³・d⁻¹、流入 BOD 濃度 200 mg・l⁻¹ を用いて算出した。

N-P 型とリン除去装置のない N 型と比較すると、N-P 型の方が汚泥の乾燥重量でおよそ 20% 程度増加していることがわかる。N-P 型では、1 日 18.8 g の鉄の蓄積が行われており、これが汚泥堆積量の差となって現れたものと考えられる。

ここで、鉄電解による汚泥増加分を汚泥中のリンおよび鉄の量から推定し、鉄電解による汚泥増加分を S 場と例として検討してみる。

1) 汚泥中のリンがすべて FePO₄ とするとき、
 ここで、汚泥中のリリン蓄積量は 1.05 kg
 従って、分子量より計算すると FePO₄ の分子量
 1.05×150.8/81 = 5.11 kg
 また、これによる鉄蓄積量は
 1.05×55.8/81 = 0.89 kg

2) FePO₄ 以外の Fe がすべて Fe(OH)₃ とするとき、
 汚泥中の鉄蓄積量は 3.48 kg
 また(1)の FePO₄ 中の鉄量は 1.89 kg
 従って、分子量より計算すると Fe(OH)₃ の分子量
 (348×1.89×106.8/55.8 = 3.05 kg

3) 鉄電解による汚泥増加分は(2)+(3) となるため
 5.11 + 3.05 = 8.16 kg
 また、増加率としては、3.4 g・n⁻¹・d⁻¹ となる。

以上の結果をまとめると、Table 6 となる。N-P 型の発生汚泥量から表の増加分を引き、BOD-SS 転換率を再計算すると、N 型には同様の結果が示された。以降、平均で 5.3 g・n⁻¹・d⁻¹ の汚泥発生量の増加が見込まれる。

合併処理槽の 1 日当たりの汚泥の発生量については、井村の調査12) では 20.9～32.4 g、渡辺の調査13) では 11.5 g、両者の調査14) では 25.5 g、また、山田の調査15) では汚泥の発生量は乾燥重量とその時の水温に関係がある。約 180 日間の貯留のうちの 17～22g 程度も報告している。今回の実験結果による汚泥の発生量はこれらの報告を比較すると少ない方に属している。一方、N 型と N-P 型では堆積汚泥量の推移は、ほぼ同じであり、N-P 型においては鉄化合物の沈殿によって汚泥の圧密が進行したものと考えられる。
Table 7 Design Condition in this Process

<table>
<thead>
<tr>
<th>Tank Name</th>
<th>Design Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaerobic Filter Tank</td>
<td>1.5 times (or more) the mean daily flow rate at a L.W.L. for a combination of the first and second compartments.</td>
</tr>
<tr>
<td>Flow Equalization Part</td>
<td>10/24 (or more) the mean daily flow rate.</td>
</tr>
<tr>
<td>Carrier Fluidized</td>
<td>BOD volumetric loading of 0.4 (kg·BOD·m⁻³·d⁻¹) or less.</td>
</tr>
<tr>
<td>Biofilm Filtration Tank</td>
<td>T-N volumetric loading of 0.1 (kg·T-N·m⁻³·d⁻¹) or less.</td>
</tr>
<tr>
<td>Treated Water Tank</td>
<td>1/6 (or more) the mean daily flow rate.</td>
</tr>
<tr>
<td>Disinfection Tank</td>
<td>15 minutes (or more) of the mean daily flow rate.</td>
</tr>
<tr>
<td>Phosphorus Removal Apparatus</td>
<td>Dissolves iron from the iron electrodes at a molar ratio of 1.5 to allow the inflow phosphorus.</td>
</tr>
</tbody>
</table>

Table 6 Increasing Sludge Volume by the Phosphorus Removal

<table>
<thead>
<tr>
<th></th>
<th>Phosphorus</th>
<th>Iron</th>
<th>Increasing rate</th>
<th>Increasing rate</th>
<th>BOD-SS Conversion rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg</td>
<td>kg</td>
<td>g·n⁻¹·d⁻¹</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Performance Test</td>
<td>0.69</td>
<td>2.34</td>
<td>5.45</td>
<td>4.30</td>
<td>27.0</td>
</tr>
<tr>
<td>Verification Test</td>
<td>S</td>
<td>1.05</td>
<td>3.48</td>
<td>8.16</td>
<td>3.80</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>0.46</td>
<td>2.81</td>
<td>6.04</td>
<td>8.50</td>
</tr>
<tr>
<td></td>
<td>Kt</td>
<td>0.73</td>
<td>2.90</td>
<td>6.58</td>
<td>4.70</td>
</tr>
</tbody>
</table>

5. まとめ

担体流動生物沈澱法に鉄酸解法を組み込んだ方式による性能試験および実証試験によって次の成果が得られた。
1) 変動水流量に対しても、流量調整が好調に機能し、水質の平準化と処理機能の安定化が可能であること
 が確認できた。
2) 低温期の試験にも拘わらず、異なる試験方法でも常時、処理水の平均値はBOD, T-Nは10 mg·l⁻¹以下、SSは
 5 mg·l⁻¹以下、BOD/Sは0.7 mg·l⁻¹以下であった。
3) リン除去装置を試験期間中適用しつつ機能し、鉄酸解機能も
 理論値にほぼ近い形で機能し、リンの安定除去に寄与する
 ことが明らかになった。
4) 試験終了後の汚泥層積算は、13.1〜21.6 g·n⁻¹·d⁻¹で
 あり、これは、リン除去装置を加えていないシステム
 に比較して3.8〜5.8 g·n⁻¹·d⁻¹の増加であった。この程度
 の増加であれば1年間分の汚泥を貯蔵することが可能である
 ことが確認できた。

最後に、性能試験及び実証試験結果の設計条件をTable 7
に示す。今回の検討の結果より、所定の性能が確保
できることが確認されたが、条件の最適化については、
さらに今後の検討を要すると考えられる。

生活排水処理の高度処理法として、窒素・リン同時除去
方式の本プロセスは、従来法にない鉄酸解法を採用し、
戸建の生活排水処理においても、窒素・リン同時除去が
十分に可能であることを示した。また、鉄酸解法を組み
込んだことによる BOD や窒素除去への影響は特に見ら
れず、固体性汚泥や水道水源などで BOD, COD, COD の
有機物質だけでなく窒素、リンなどの栄養塩類の除去も
必要な場合の水質改善対策としての抜本的な生活排水対
策としての大きな波及効果が期待される。

なお、リン資源の回収を考えた場合、リン吸着剤によ
るリン除去は図表別に吸着・再生を行ってリン資源の回
収を行うことができるが、コスト的に解決すべき課題が
残されており、本プロセスで導入した鉄酸解法によるリ
ン除去においては、各家庭からリンを多くに蓄積した汚
泥を回収し、大規模な施設などからまとめてリン資源の回
収を行うような方法が考えられる。したがって、今後は
リンを多量に含んだ汚泥からの安価なリン抽出法の開発
が必要になってくると考えられる。

参考文献
1) 中島淳 (2001) 小規模生活排水対策の近未来と浄化槽システム,
 用水と廃水, 43(1), 27-35.
2) 伊藤敏 (1998) 生物廃棄物の処理システムにおける脱イオン技術
 アルミニュウム電解脱イオン法. 第1回水質環境学会シンポジウム, 101.
3) 小川雄次 (2000) 小規模生活排水処理施設のリン除去, 第34
 回日本水環境学会年会講演集, 35.
4) 中島淳 (1997) リン吸着剤を用いた生物廃棄物処理によるBOD
 廃棄, リン除去工法, 第31回日本水環境学会年会講演集, 122.
5) 仏顕高樹, 高森恒雄 (1999) 水中低温処理の除去,. 回収用吸
 着剤の開発状況と課題, 用水と廃水, 22(5), 37-43.
6) 小森裕, 高森恒雄, 山本勇司, 奥村孝夫 (1999) 鉄酸解
 剤によるリン除去システムの基礎検討, 水環境学会誌, 22,
 459-464.
7) 藤谷雅男, 佐藤利之, 佐藤利之, 佐藤利之, 佐藤利之, 佐藤利之, 佐藤利之
 (1998) 家庭用合併処理浄化槽の処理水質向上に関する
 研究, 用水と廃水, 30(5), 30-35.
8) 木村直二, 佐藤利之, 鈴木直人, 丸藤直人, 丸藤直人
 (2004) 水酸化ナトリウムを用いた生活排水処理の基本実験
 とその発展, 第44回国際水処理技術研究会大会講演集, 49-54.
9) 本井正則, 佐藤利之, 鈴木直人, 丸藤直人, 丸藤直人
 (2004) 水酸化ナトリウムを用いた生活排水処理の基本実験
 とその発展, 第44回国際水処理技術研究会大会講演集, 26,
 27-32.
10) 木村直二, 佐藤利之, 鈴木直人, 丸藤直人, 丸藤直人
 (2004) 水酸化ナトリウムを用いた生活排水処理の基本実験
 とその発展, 第44回国際水処理技術研究会大会講演集, 26,
 27-32.
11) 井村正則, 佐藤利之, 鈴木直人, 丸藤直人, 丸藤直人
 (2004) 水酸化ナトリウムを用いた生活排水処理の基本実験
 とその発展, 第44回国際水処理技術研究会大会講演集, 26,
 27-32.