Analysis of Bacterial Community Structure in Composting Toilet Reactors Using Molecular Biological Techniques

Ayano DAIBO*, Kiyohisa KURISU** and Keisuke HANAKI*

* Department of Urban Engineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
** Research Center for Advanced Science and Technology, the University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan

Abstract

The bacterial community structure in composting toilet reactors was analyzed using three molecular biological techniques (PCR-DGGE, T-RFLP, and cloning). Investigation was conducted for about six months at two trial sites in Japan. The main points of difference between the two sites are in the frequency of use air temperature (Site1: 5-6 times-d\(^{-1}\), 14.9\(^\circ\)C, Site2: 30 times-d\(^{-1}\), 23.4\(^\circ\)C). The DGGE band pattern indicated that the bacterial community profiles changed immediately after the start of the operation and did not reach a stable phase. Sequencing of the dominant DGGE band and clones revealed that the members of the community consisted of Bacteroidetes-related, Proteobacteria-related and other uncultured bacteria in the Site1 reactor. In contrast, Bacillus-related bacteria were detected from dominant DGGE bands from Site2 samples. This difference resulted from the difference in temperature inside the reactors. Some sequences from Site2 samples were also reported from other biodegradation processes under aerobic and thermophilic conditions. The bacterial community of the Site1 profile also had some similarity to other composting processes. Further investigation into the details of the bacterial community and the metabolic characteristics is needed to improve composting toilet operation.

Key words: PCR-DGGE, T-RFLP, cloning, thermophilic, composting toilet

1. はじめに

高温接触酸化型トイレは人尿を処理槽内で生分解により堆肥化するシステムのひとつであり、高温、好気的環境に保たれた処理槽内において微生物の働きにより有機物を分解する。水を使わない・水に流さないという従来の水環境への最適・省資源の低減に役立ち、また分散型施設であることから、大規模な管理や処理場などのインフラ増設の必要がない。従来、廃棄物として扱ってきた人尿をコンポスト化して有機物・栄養塩を回収し、再び農地に利用することで循環を生むことができるため、持続可能な技術として注目を集めている。国内では自然公園や水源地、イベント会場などで実用化されており、世界的にも多様なニーズに合わせて注目が高まっている1,2）。

人尿を微生物の働きによって堆肥化するトイレ自体は新しいものではないが、近年では換気装置、換気装置、処理槽内の含水率を抑えるためのヒーターなどの設備を備え、快適性に優れた製品が商品化されてきている。国内においてはオーガクスを処理槽内の主体として利用したトイレが開発され研究され、実証試験も行われている。従来のコンポスト化トイレ型盤を含むと現在のアンモニア発生が、便に含まれる無機性成分が増殖しureaseが生産され、このureaseが尿中の尿素をアンモニアと炭酸ガスに分解するというプロセスで発生した9）。しかし、処理槽内の担体としてオーガクスを利用することにより、水分をオーガクスに保持し水分蒸発を促し、効率よく槽内を好気的条件に保ち、臭いの問題に対応できるようになっている10)。

実験室での実験結果より、処理速度・処理効率の観点からは、60℃、含水率60%，pH5-8, 好気処理が最適な運転条件であることが報告されている4,5)。またコンポスト化過程の炭素特性は、機能的に微生物群集構造の分解特異性に大きく依存すると言われる11)。廃棄物の管理、コンポスト化過程、高温接触酸化型の廃油処理プロセス、下水汚泥の液体コンポスト化12)など有機物の比較的高温下での生分解プロセスにおける微生物群集構造についての見解はこれまでに集められている。しかし、群集構造の把握、および代謝特性的解明はいずれも十分ではない。また高温接触酸化型トイレの運転条件と、処理能力との関係を説明する微生物については研究
がほとんどされてこなかった。そこで本研究では、処理特性解析の最初のステップとして、国内発酵の実験試験地の試料を対象に分子生物学的手法を組み合わせて細菌群集構造を解析することを目的とした。

今回選択した分子生物学的手法はPCR-DGGE（Denaturing Gradient Gel Electrophoresis法）、T-RFLP（Terminal Restriction Fragment Length Polymorphism法）、PCR-Cloningの3つであり、分子マークとして16S rRNAを用いた。PCR-DGGE法では、複数のサンプルをバターン解析により視覚的に比較することができる。切り出したバンドの塩基配列を解読することで系統学的種群情報も得られる。しかし群集構造が複雑だった場合、すべてのバンドを切り出すことは難しく、V3領域を標的にしてい

2. 方法

2.1 実験試験地および運営条件

高温接触酸化型トイレ（正和電工）を試験的に運転している日本国内2サイトを調査対象とした。両試験地の基本的情報をTable 1に示した。槽内温度は固定された温度計によってモニタリングされたもので、実際には槽内のオーガクス温度には位置によりばらつきがあると考えられる。試験地1と2の大きな違いは、大気温度と使用頻度である。試験地1は一般家庭に設置したもので、1日に5-6回使用されている。一方、試験地2は工事現場事務所に設置したもので、1日に約30回使用されている。

平均気温：試験地1で14.0℃、試験地2で21.4℃と、試験地2の方が约10℃高い。処理槽内のオーガクス試料は少なくとも2回採取し、現地より40℃に保った状態で1日以内に移設した後、実験に用いるまでの間、-80℃にて保存した。

2.2 DNA抽出

オーガクスからのDNA抽出にはピーブ粉末によるDNA抽出キット（Isoln, Geno）を用い、0.2gのオーガクス試料より抽出を行った。抽出したDNAの濃度及び純度はND-1000（Nanodrop）を用い、260nm吸光度により確認した。抽出したDNA試料は使用までの間、-20℃にて冷凍保存した。

2.3 PCR-DGGE法

抽出したDNAを用い、槽内の細菌群集の構成を把握するため、PCR-DGGE法を適用した。PCR-DGGEはMuyzerらの方法によった。細菌の16S rDNA V3領域を標的とし、357Gおよび518のプライマーセットを使用した（Table 2）。DNA抽出液と所定量のPCR buffer、dNTP、AmpliTaq Gold（いずれもApplied Biosystems）を混ぜし、18sBAを精製の目的にて添加した。サーキュリーサイクル（PE9700、Perkin Elmer）にてPCR反応を行ない、その際の塩基配列は95℃（10分）、94℃（30秒）、53℃（30秒）、72℃（30秒）×30サイクル、70℃（10分）とした。得られたPCR産物はアガロース

Table 1 Characteristics of the trial sites.

<table>
<thead>
<tr>
<th>Site 1</th>
<th>Site 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>City prefecture</td>
<td>Chiba</td>
</tr>
<tr>
<td>Lat., lon</td>
<td>36°13′/139°</td>
</tr>
<tr>
<td>Average air temp</td>
<td>14.0℃</td>
</tr>
<tr>
<td>Reactor temp</td>
<td>50℃</td>
</tr>
<tr>
<td>Operating temp</td>
<td>50℃</td>
</tr>
<tr>
<td>Type of toilet</td>
<td>S-500</td>
</tr>
<tr>
<td>Reactor size (cm)</td>
<td>82×150×93</td>
</tr>
<tr>
<td>Frequency of use (times·day⁻¹)</td>
<td>3-6</td>
</tr>
</tbody>
</table>
2.5 PCR-Cloning法
試験地1の8日目試料のDNA抽出液はPCR-Cloning法に供した。プライマーセットは27Fおよび518Rを用い、16S rDNAを標的としてPCR反応を行った（Table 2）。温度条件は95℃（10分）、94℃（30秒）、50℃（30秒）、72℃（2分）×30サイクル、72℃（10分）とした。PCR Cloning Kit (QIAGEN) を用い、同社のプロトコールに従ってcloningを行った。形質転換されたクローニングプライマーセットsp6、T7を用い（Table 2）PCR反応にて増幅した。反応条件は95℃（10分）、94℃（30秒）、50℃（30秒）、72℃（90秒）×30サイクル、72℃（10分）とした。得られたPCR産物はアガロースゲル電気泳動によってサイズを確認し、Montagen96クリーンナップキット（Millipore）により精製し、塩基配列の解読に供した。

2.6 塩基配列の解読
塩基配列の解読に当たっては、BigDye Terminator Cycle Sequencing kit ver.3.1 (Applied Biosystems) に より塩基配列の解読を行った。Montage SEQクリーンナップキット（Millipore）を用い、余剰塩素を除去し、オートシー ケンサーABI PRISM 3100-Avant Genetic Analyzer (Applied Biosystems) によって解読した。357F、518R、両側から解読 したV3領域の塩基配列をアセンプリングソフトAuto Assembler (Applied Biosystems) によってアセンプリングを行い、配列の確認を行った。各配列についてDDBJ (http://dnav.nig.ac.jp) の提供する相補性検索プログラム BLASTにより、近縁種を検索した。系統解析にはDDBJ の提供するCluster Wを、系統樹作成にはTreeView (Win32)を使用した。進化距離計算にはXimura-2-parameterの法を用い、ND法により系統樹を作成した。

3. 結果
3.1 PCR-DGGE法による細菌群集構造遷移の把握
試験地1の試料について DGGE 解析の結果を Fig.1に示す。未使用の試料（wo）とトイレ使用開始直後（day8）の試 料ではバンドパターンに大きな違いがある。その後、しば らくバンドパターンはほぼ一定であるが（期間3）、57日 目を除く大きく変化した。また全試料のバンドパターンを示した後（期間3）、141日目以降のサンプルからは異 なるバンドパターンが見られた（期間2）。試験地1および 2の両試験地の試料について繰り返しの細菌群集構造 の推移を比較した DGGE 解析の結果を Fig.2 に示す。試験地2の試料において未使用のオガクスと、使用開始後 試料では異なるバンドパターンを示した。使用開始83日 目を除く、バンドパターンが変化したがその後は大き な変化は見られなかった。両試験地ともに、約6ヶ月間の実験期間中、安定したバンドパターンを示すこととなっ た。バンドを切り出して塩基配列の解読を試みた。いくつかのバンドは精製を繰り返しても十分にDNAの分解が 行えず、配列が解読できなかったが、得られた配列につ いては系統解析を行い、その系統学的位置を Fig.3に示し た。なお決定した塩基配列のAccession No.はband 1-21 の順に、AB364386-AB364406である。

未使用オガクスから検出されたband 1はFirmicutesに、 band 2-5はγ-Proteobacteriaに近縁である。実験期間中試 験地1と2に共通に見られたband 6、および試験地1から

検出されたband 7、10、13、19はBacteroidetes門に近縁であ った。BacteroidetesはBacteroidetes、Flavobacteria、 Sphingobacteriaという3つの亜門からなるグラム陰性細菌 門であるが、切り出したバンドはFlavobacteria、Sphingoba- cteriaに近縁であった。これらの亜門は好気性、遠心抵抗性 細菌を多く含み、後者は海洋、土壌、廃棄物水処理系などに 分布する細菌種を多く含むとされている。

試験地2から検出されたband 8、11、14、16の塩基配列 は卵管合分の多い発売の高還原酸化処理槽から単離さ れた細菌と一致するか、もしくは非常に高い相問性を示 した。これらの配列とband 15は、Bacillusに近縁な種 であった。Fig.3に示したB.licheniformis、B.subtilis は高温、好気的な有機物の生分解過程において存在が確 認されている細菌種である。またB.licheniformis、B.subtilis、 B.thermoamylolovoransは好熱性細菌として知られている。

Bacillusは好気性もしくは遠心抵抗性の内生細胞形成 細菌で、好熱性細菌、好塩性細菌、好アルカリ性細菌など 幅広い細菌種が含まれるが、本系は高温、好気的環境 であったことから特に好熱性Bacillusに近縁な細菌種が 存在したものと考えられる。

![Fig. 1 DGGE analysis of Stain samples vs. virgin sawdust.](image1)

![Fig. 2 Comparison of DGGE patterns between two trial sites.](image2)
Fig. 3 Tree of phylogeny depicting relatedness between clones and bands.

Table 3 Bacteria detected from aerobic composting or degradation process for organic wastes.

<table>
<thead>
<tr>
<th>Process</th>
<th>Media</th>
<th>Source</th>
<th>Temp.(°C)</th>
<th>pH</th>
<th>Moisture content(%)</th>
<th>Analytical method</th>
<th>Dominant bacteria</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field-scale composting</td>
<td>rice straw</td>
<td>cattle manure</td>
<td>60</td>
<td>7.5-8.0</td>
<td>8.8-9.5</td>
<td>quinolone profile</td>
<td>α, β, ε-Proteobacteria, Bacillus, Bacilliaceae, Enterobacteriaceae</td>
<td>18</td>
</tr>
<tr>
<td>Field-scale composting</td>
<td>sewage</td>
<td>cow manure</td>
<td>23-27</td>
<td>7.0</td>
<td>7.5</td>
<td>DGGE</td>
<td>Bacillaceae, Bacillus, β-Proteobacteria</td>
<td>8</td>
</tr>
<tr>
<td>Soil sterilization</td>
<td>amended soil</td>
<td>organic matter</td>
<td>55</td>
<td>7.0-8.0</td>
<td></td>
<td>DGGE</td>
<td>α-Beta-Proteobacteria, Actinomycetes</td>
<td>19</td>
</tr>
<tr>
<td>Activated sludge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DGGE</td>
<td>α-Proteobacteria, Actinomycetes, Bacilliaceae, Flavobacteriaceae</td>
<td>20</td>
</tr>
<tr>
<td>Field-scale composting</td>
<td>returned compost,</td>
<td>garbage</td>
<td>60</td>
<td>6.67</td>
<td>62.1</td>
<td>DGGE</td>
<td>Bacillus, Clostridium, Enterobacteriaceae, Sphingobacterae</td>
<td>15</td>
</tr>
<tr>
<td>Field-scale composting</td>
<td>after 1 day accumulation,</td>
<td></td>
<td>60</td>
<td>6.74</td>
<td>36.5</td>
<td>culture</td>
<td>Bacillus, Clostridium, Enterobacteriaceae, Sphingobacterae</td>
<td>15</td>
</tr>
<tr>
<td>In-situ YOCS*</td>
<td>wood chip</td>
<td>waste water</td>
<td></td>
<td></td>
<td></td>
<td>DGGE, FISH</td>
<td>Bacillus, Bacilliaceae</td>
<td>16</td>
</tr>
<tr>
<td>Compostor</td>
<td>wood chip</td>
<td>restaurant waste</td>
<td>25-60</td>
<td>7.5-8.4</td>
<td>35-60</td>
<td>FISH</td>
<td>Bacilliaceae, Bacilliaceae</td>
<td>7</td>
</tr>
</tbody>
</table>

*Thermophilic composting process

0.1
3.2 T-RFLP法の結果

Fig.4にT-RFLP法の結果をクラスター解析したものを示した。未使用オガクス（va）における細菌群集構造は、他のものと大きく異なった。試験地2の試料は、ほぼすべての試験地1の試料と異なるクラスターに分類された。

試験地1の試料A-a-c（5-57日）、A-a（64-106日）、A-b（123日）の大きさ3のクラスターに分かれた。

PCR-DGGEで見られた細菌の選別時期と数日のずれを生じているものの、短期経過に伴い、3つの大きなグループに分かれる点では同様の傾向が見られた。

試験地1において、各試料は処理槽内の異なる点から採取し（in:便槽側、out:オガクス交換用外部取り出し口側）、これら3点での試料は、おおむね同一、もしくは近縁クラスターに分類された。よって、採取の効果により、処理槽内の細菌群集構造は、ほぼ一様であることが示唆された。

いくつかの試料は位置が小さく、ピーキーがはっきりと認められないものや（Fig.4内、点線部分）、ピーキーを観察できないものがあった。この原因としてPCR反応中の不完全性が考えられた。

3.3 PCR-Cloning法の結果

試験地1の8日目の試料から得られた55クローンを、塩基配列データベースとの相関検索結果に基づいて登録した。なお決定された塩基配列のAccession No.は、Clone 1-55の内、AB534407-AB534461である。概ねレベルで塩基配列を分類した結果、β-Proteobacteria（48.8%）、Firmicutes（21.7%）、γ-Proteobacteria（20.0%）、α-Proteobacteria（14.5%）で98.2%を占めた。

Firmicutesの中でもBacillusに近縁なクローン262個（9.bseq）96%以上の相違性を持つ塩基配列同士をグループ化するとグループA（17 sequences）はAlcaligenesに、グループB（8 sequences）はPseudomonasに、グループC（Sequence）はBurkholderiaに、グループD（4 sequences）はSphingomonasに、グループE（4 sequences）はRhizobialesに近縁であることがわかった。

各クローンの系統学的位置をFig.3に示した。

4. 考察

4.1 細菌群集構造の選択

高温接触酸化型トイレの細菌群集構造の選択の範囲をFig.3に示した。オガクスの吸入トルエンとオガクスの種類に影響を与える環境条件としては、pHと含水率である。

Fig.5に見られるように、試験地1は48日目以降に処理槽内pHが7.5以下に低下し、含水率が60%以上に上昇している。その後、77-71日目間でオガクスの選択に影響を与える環境条件として、温度が8.5〜10.5℃に近寄ると示されている。

4.2 連続的観察

連続的観察により、オガクスの選択に影響を与える環境条件として、温度が8.5〜10.5℃に近寄ると示されている。その後、77-71日目間でオガクスの選択に影響を与える環境条件として、温度が8.5〜10.5℃に近寄ると示されている。

4.3 考察

連続的観察により、オガクスの選択に影響を与える環境条件として、温度が8.5〜10.5℃に近寄ると示されている。その後、77-71日目間でオガクスの選択に影響を与える環境条件として、温度が8.5〜10.5℃に近寄ると示されている。

連続的観察により、オガクスの選択に影響を与える環境条件として、温度が8.5〜10.5℃に近寄ると示されている。その後、77-71日目間でオガクスの選択に影響を与える環境条件として、温度が8.5〜10.5℃に近寄ると示されている。

連続的観察により、オガクスの選択に影響を与える環境条件として、温度が8.5〜10.5℃に近寄ると示されている。その後、77-71日目間でオガクスの選択に影響を与える環境条件として、温度が8.5〜10.5℃に近寄ると示されている。
このため本実証試験期間中、水分活性は細菌の増殖に十分な値を保っていたと考えられる。電気伝導率は0.5%増加を示し、実験期間中に7000μS/cmに達した。今回の実験期間中、温度、水分活性、電気伝導率は細菌群集構造の遷移には与えたした相関は見られなかった。一般的にコンポスト化の反応温度はpH8-10で最大になること、また含水率が60%を超えると急激に増大することが知られているが、本実験結果においては含水率が60%を超えた期間を含め、オガクズの状態に異常は見られなかった。これは試験地1で使用されたトイレの処理能力が投入される有機物に対して十分に大きかったためと考えられる（Table1参照）。

2.2細菌群集構造の特徴
処理槽への投入有機物負荷、及び槽内温度は試験地2の方が高かった。好熱性Bacillusに近縁な種が継続的に検出されるDGGFの結果から示唆される試験地1との細菌群集構造の違いは、この槽内の温度の違いによるものと考えられる。

本研究においてはBacteroides門のうち、Bacteroides綱の存在はなかった。Bacteroides綱は腸内フローラ主要構成細菌や病原細菌として知られる対酸性有機物栄養性の細菌で、糞便と共に排出されていると考えられるが、槽内の好気的に保たれていなかったために検知されなかったものと考えられる。Table3にさまざまな有機物の生物学的処理実験における、細菌群集について既往の研究をまとめた。高温接触型寒性タイプの、 Shirahigeが投入され、槽温度が高い環境であると考えられ、未知の細菌群集構造を持つことが予想されたが、Proteobacteria、Firmicutes、Bacteroidetesなどに本実験試験地に存在が確認された細菌は、メディアの有機物源・処理方法が異なる他の処理方法からも検出されているものであることがわかる。

4.3各手法から得られた結果の比較
Fig.3にcloningとDGGEとが二つの異なる解析手法によって検出された塩基配列を比較検討と同一系統樹内に示したものはあるが、完全に配列が一致するbandとclonesは存在しなかった。また試験地1から検出されたbandには同じ試験地1の由来するクローンと同レベルでの比較においても塩基配列のものが見られなかった。DGGEとクローン解析で用いた試験地1の8日目試料から発現したDNA抽出液は同じものであるが、PCRを行う際に異なるプライマーを選択することによる増幅効率の違いや偏りが結果に影響している可能性がある。クローン解析については解析したクローン数が十分でないために塩基配列が判明したことを考えられる。一方、DGGE解析は切り出したバンド数が少なかったため、群集を構成する菌に関して得られる情報は限られていた。両手法が互いに相補的な役割を果たしているため菌相の評価に差異が出た。

T-RFLPは27F-1492Rで増幅した塩基配列に対して制限酵素処理を行ったが、cloning、DGGEとともに塩基配列解読に357F-518Rプライマーを用いたため、27F-1492R領域の塩基配列を得ることはできなかった。このため、検出された塩基配列の制限酵素処理による正しき予想断片長を知り結果の比較をすることができなかった。また本T-RFLP解析では500bpの内部標準を用いたが、500bp以上のT-Rのピークが観察されるなかった。本研究で使用した測定器のT-Rの観測限界は約500bpであるため解析は500bp以下のピークについてのみ行ったが、より長い内部標準を用いた結果のピークを把握でき、結果の偏りを軽減できる。また本研究では1種しか用いなかった制限酵素複数数個数をすることで細菌種についてより多くの情報が得られると考えられる。

5.まとめ
高温接触型トイレのオガクズ試料に対してPCR-DGGE、T-RFLP、Cloningによる解析を行った結果から、糞内の細菌群集構造に関する以下の知見が得られた。
1) トイレ使用開始前後で細菌群集構造は大きくななくなり、細菌群集構造は試験地1、2ともに6ヶ月の実験期間を通じて次第にかつ安定した変化をし、安定状態に至ったものと考えられる。
2) DGGE解析によって試験地1ではBacteroidesに、試験地2では好熱性のBacillusに近縁な塩基配列が6ヶ月の実験期間を通じて検出された。両試験地における主要な細菌の違いは、処理槽内の温度の違いに起因すると考えられた。特に試験地2に存在するBacillusに近縁な細菌は、他の高温接触型処理プロセスに存在する細菌と近縁であった。
3) T-RFLPにより処理槽内の細菌群集構造を比較した結果、槽内はほぼ一致に混合されていることが示唆された。
4) クローン解析ではProteobacteriaとFirmicutesとがクローンプライムの98.2%を占めた。クローンとDGGEのバンドから得られた塩基配列について系統学的定位関係を解析した。
5) 手法の持つさまざまな偏りにより、各手法によって得られた菌相の解析結果に差異が見られた。
本研究は高温接触型寒性タイプのトイレに対し、細菌群集構造解析を適用した初めてのものである。

謝辞
本研究を行うにあたり、北海道大学・伊藤光生氏、Telmeの水女子大学・大塚隆義氏、赤石知英氏、Dau水環境管理センター・淵澤慎二氏の協力を得た。ここに感謝の意を表する。
なお本研究は科学技术振興機構、戦略的創造推進事業「持続可能なシステム開発と水循環系への導入」の中で行われた。
参考文献

1) 根中史朗, 根生秀昭(1993) 高温堆肥化型生物質発電における処理槽内細菌群集構造

