伊勢湾の海況特性と赤潮予察*

1. はじめに

伊勢湾の富栄養化が叫ばれて久しだ。また、伊勢湾の総量規制として、窒素・リンの削減目標値が出されている。このような行政面での動きは、言うまでもなく伊勢湾を自然状態の海にしたいという願望からきている。自然状態の海とは均衡のとれた生態系が維持されていることであり、例えば昭和40年代初期にみられるように多種多様の生物が共存共栄しており、赤潮の発生も現在のように顕発しない状態をいうのであろう。しかし現在は昭和40年代に比較して伊勢湾沿岸域の開発が進み、水質の浄化や生物の生存の場として極めて重要役割を果たしてきた干潟の消減が、特に顕著で現在は護岸に囲まれた状態となっている。このように自然の浄化能力の減少と共に、人間活動の増加による負荷量の増大が伊勢湾の過栄養状態に拍車をかけている。現在の伊勢湾を自然に浄化させる最大の力は、台風などの来襲による海水の摂拌または赤潮の大発生（赤潮の回収を前提）があげられる。

現在の伊勢湾は主としてノリの生産の場となっており、その他の水産物としては、プランクトン食性魚であるイワシ類がその中心となっている。ノリにとっては、特に秋から冬にかけて窒素・リンは必要であり、ある程度の栄養豊栄は必要となる。従って、この時期の暖昧赤潮の発生は、プランクトンに栄養分が取られ、ノリにとっては栄養塩不足をもたらすことになる。たとえば、昭和61年度伊勢湾において漁業被害のあった赤潮は5件で、内容はすべてノリの色落ちであった。

以上の点から判断して、伊勢湾における赤潮予察の重要性は、水産生物等の経済面からみると、ノリの生産にとって若千の必要性が認められるにすぎない。赤潮の発生は図1に示すように気象条件・海象条件や水質条件により強い影響を受けると共に、赤潮生物自体の生理生態学的特徴、他種植物プランクトンとの競合関係など多くの要因により複雑な影響を受ける。この复杂さおよび不確定の変動要因が多いこと等の故に赤潮の発生予察をより一層困難にしている面もあるが、発生予察の要因を気象の面を中心にして单纯化し、それに対応する措置をとることも一つの考え方である。筆者は伊勢湾周辺で得られた既存資料をもとにして赤潮予察の可能性について議論を提供する。

2. 降雨等を指標とした予察

三河湾ではしばしば発生する赤潮プランクトンのSkeletonema, Chaetoceras, Proorocentrum, Noctiluca, Mesodiniumについてその個体数がどのような因子によって変動するかについて検討したところ、三河湾で最も発生の多い赤潮のProorocentrumは、河川からのCOD負荷量（寄与率51％）が多いほど赤潮の発生がみられたことであった。伊勢湾への負荷量は、表1に示すように河川流量が平常状態の時には生活排水・産業排水量の発生負荷量が大きいが、洪水時の場合には河川負荷量は無視できないほどである。すなわち、豪雨によって生じる流れ変動が重要な影響をもつ。すなわち、豪雨により河川に供給される物質が、どのような好適条件のもとで生物の増殖が生じるかが重要である。

伊勢湾における藻類藻の赤潮形態の条件を岩崎の報告からみると、Proorocentrum minimumは11.0~29.3％S（6.1~16.2％CI）20.5~30.4℃、Oliothodiscus sp.は3.5~19.2％S（1.9~10.6％CI）23.9~25.9℃、Proorocentrum micansは17.5~31.3％S（9.7~17.3％CI）15.6~31.4℃の条件のもので発生しやすい。また、環境水の塩分濃度と各種藻類藻の増殖結果との関係をおおむね塩分濃度15~25％の範囲に細胞数の最大値がみられる。伊勢湾における塩分とクロフィルとの関係をおおむねではあるが、検討してみたところ、塩分10~25％の範囲においてクロ...
図1 急性的赤潮の発生に関連する諸要因

表1 伊勢湾への負荷量（t/日）

<table>
<thead>
<tr>
<th></th>
<th>T-N</th>
<th>TIN</th>
<th>T-P</th>
<th>COD</th>
</tr>
</thead>
<tbody>
<tr>
<td>河川負荷量</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>木曾川（8月）</td>
<td>46</td>
<td>31</td>
<td>8.3</td>
<td>38</td>
</tr>
<tr>
<td>長良川（8月）</td>
<td>6.9</td>
<td>6.2</td>
<td>0.8</td>
<td>15</td>
</tr>
<tr>
<td>（洪水）</td>
<td>30</td>
<td>22</td>
<td>5.8</td>
<td>250</td>
</tr>
<tr>
<td>発生負荷量</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生活排水</td>
<td>72.5</td>
<td></td>
<td>6.7</td>
<td>179</td>
</tr>
<tr>
<td>産業排水</td>
<td>52.9</td>
<td></td>
<td>7.3</td>
<td>208</td>
</tr>
<tr>
<td>その他</td>
<td>68.7</td>
<td></td>
<td>7.7</td>
<td>39</td>
</tr>
</tbody>
</table>

ロフィルの最大値がみられる。以上から生物の増殖にとっての良好条件をもたらすと推測すると塩分10～25％の範囲に存在すると考えられる。

図1にみるように豪雨により河川から流出した淡水は表層塩分を低下させ、好適塩分条件（S.10～25％）のもとで適度な栄養塩類を供給し、プランクトン増殖を促進する。これにより塩分条件のもとで、栄養塩類がどのような濃度を示すか各海域ごとに知ることは重要である。事件例として三重県宮川河口海域の塩分と窒素の関係をみると、河川水中で700μg・L⁻¹を背景に含む塩素は海水塩分20％付近では、おおむね河川水濃度の1/2～1/5に希釈拡散される。これにより塩分条件のもとで栄養塩類が供給されると推測すると、塩分15～25％ラインは潮時によっても変化するし、流出する河川流量は一定であるにもかかわらず、大潮時小潮によっても変化が大きい。大潮時は水の動きが大きいため、好適条件の水塊を広範囲に拡散するし、上下層の混合が生じる。これに対して小潮時は履歴形成、塩水安定による栄養素塩形成によるプランクトン増殖の間接的寄与も行っている。事例として三重県宮川河口海域において大潮・小潮時の塩分20％および25％ラインの変動状況（河川流量12～15m³・sec⁻¹で一定）を調べたところ、大潮時の場合は潮時によって塩分線（S.20％）は大きく変動し、塩水流量の違いが大きい。また、バッチ状になって流動する水塊もみられ、このような塩水中でプランクトンの増殖が促進されているものと考えられる。しかしながら小潮時の場合、塩分線（S.25％）の変動は小さく大潮と小潮における塩水流量の違いが大きい。

伊勢湾内で最大流量をもつ木曾川川について参考文献をもとに河川水の拡散状況を検討した資料によると、1985年9月9日の洪水時（木曾川合計流量3,200m³・sec⁻¹で平水流量の約10倍の状況）には、木曾川水の大部分は、伊勢湾東岸沿い（三重県側）に流出し、一部は西岸沿い（愛知県側）に流出するものと推定されている。この拡散域は年間の赤潮発生海域と一致している。なお、平水流量（木曾川合計流量330 m³・sec⁻¹以下）では、どちらかといえば知多半島側に流出する勢力が強いように観察される。木曾川水の場合、河川流量の違いによって河川水質が異なるため、たとえばCODについてみると、豊水流量付近から流出する河川水濃度に変化がみられる。豊水流量（おおむね400mg・sec⁻¹）付近では、COD 2～3 mg・L⁻¹であ
るが、それ以上の流量するとCODも増加し10mg・l⁻¹以上となり③海域に急激な栄養塩の負荷が生じる。なお、供給された栄養塩類がどのような条件において赤潮発生の要因となるかは後述する。

以上からも河川流量が豊富な流量に達した場合に赤潮発生予兆の際の予兆条件の設定も可能であると推察される。愛知県では木曽川川合計流量50～750m³・sec⁻¹で赤潮が多発④という報告もみられることから、この推察も一説に間違ってはいない。また、降水量では100～300mmの月が多く発生している⑤ことなどから赤潮予兆の際には降水量による監視も重要な要素の一つであると考えられる。

3．風等を指標とした予兆

発潮発生要因の一つとして濃度形成後の水塊安定時において、変酸素層が形成されるあと、風強などによる上下層混合による底層水の巻きあがりによる場合も証明している⑥。伊勢湾における変酸素層の増殖、底層水の浮上現象とは無関係であるが、風波影響の増殖は底層水の浮上現象のあと認められ、特にW・N風によって生じている⑦。図1に示したように風が弱やかで、晴天が続く日射量の増大と共に表層水温が上昇し、昭和59年7～9月の10m／sec以上の風向

7月13日	5～19時	SE
16日	15～17時	SE
20日	10～18時	SE～SSE
8月14日	14～17時	SE～SSE
15日	8～23時	SE
21日	8～24時	SSE
22日	0～11時	SSE
23日14～22時	WNW～NW	
9月26日	4～19時	NW

8月23日の天気図

9月26日の天気図

図2 伊勢湾におけるW・Nの強風出現状況

水塊が安定すると共に貧酸素層は形成される。

赤潮予兆にあたって低酸素形成時における強風の出現状況の監視が必要である。W・N風の日最大風速が10m・sec⁻¹以上になると強風の出現頻度は、夏季（6～8月）の場合、約14日（92日中）で、1週間に1回程度は出現する割合となる。秋（9～11月）の場合は約34日（91日中）である⑧。なお名古屋港の湾口の岸辺では伊勢湾北東部の再発・衰弱コースに比較して10m・sec⁻¹以上の強風が吹くと予想される日は予測可能であるため、気象事務室の赤潮予兆も可能である。たとえば、昭和59年7～9月に10m・sec⁻¹以上が吹いた風向のうちW・N風は8月23日と9月26日のみみられるが、この場合の天気図は図2に示したとおり台風づくちの風が東日本を東に進むと前線によって場合となりうる。

4．水質からの予兆

図1に示すように気象・海洋環境が赤潮の発生しやすい状態を整えたあと、好適塩分条件のもとで栄養塩類・ビタミン類・重金属類・増殖促進物質・阻害物質の供給がなされたあとに赤潮が生じる⑨。

三重県の実施した水質からの赤潮予兆をみると以下のような特徴があげられている⑩。

(1) 表層水の銅量および溶存態マンガン量の増加が観察されたあとに、鞭毛赤潮が認められる。

(2) 赤潮海域でのアミノ酸酸化は、無発生海域と比べてレリン・グリシン・アラニンなどの割合が少なく、逆にロイシンの割合が多い。

(3) 6～7月のAmino-N/DONは、6.7～64.5%であり、赤潮発生期・末期はこの値が小さい。赤潮初期はこの値は大きくなる。

しかし、これらを赤潮予兆の指標として使用するには相当のエネルギーが必要である。そこで栄養塩類の消費の面から赤潮の予兆を試みてみた。今、植物プランクトンの化学組成の平均的なモデルとして（CH₂O）₁₀₆（NH₄）₁₅H₂PO₄の実験式が提案されているが、その生産（光合成）の基本式は(1)で与えられる。また、プランクトンに含まれる炭素：窒素：リンの原子比は106：16：1とされ、海洋の低次生物生産を論ずる場合の基礎的な数値となっている。伊勢湾のような栄養塩状態にある海域では、水質濃度は植物プランクトンの生産と分解によって左右されるであろうことが想像される。そこで伊勢湾の水質に対して(1)式をあてはめて水質特性を検討してみた。
図3 伊勢湾における赤潮予察システム

Parkは海水中の栄養塩類濃度は(2), (3)式に示すように保存性栄養塩類と酸素利用度から導かれる栄養塩類濃度の和によって表現した。

\[106\text{CO}_3 + 16\text{NH}_4 + H_3\text{PO}_4 + 126 \cdot H_2\text{O} \rightarrow (\text{CH}_2\text{O})_{106} (\text{NH}_3)_{16}\text{PO}_4 + 126 \cdot (\text{O}_2) \]

(1)

\[P_{\text{mean}} = P_p + PO_4 \]
(2)

\[N_{\text{mean}} = N_p + NO_4 \]
(3)

1. め た ま に

伊勢湾の海況と赤潮との関係について解析したところ, 伊勢湾の場合赤潮の発生を予察する場合, 以下の点を監視すればある程度予察が可能であると思われる。

1) 夏季における W-N 風の 10m/sec 以上の強風の監視
2) 木曾川水の流量が豊水流量以上となる場合の降雨量を推算し, アメダス観測所の降水量の監視
3) 降雨後の日射量の增大, 5 m/sec 以下の風速の穏やかな日の監視
4) 上記の条件が与えられた後の塩分・水温・酸素（AOU）「自動観測塔の利用」「アミノ酸組成の細部的な監視」

具体的には図3のシステムが考えられるが, 伊勢湾をモデルとしてこのフレームに基づき過去のデータを解析すると共に, フィールド実験を行ってみる必要があると思われる。

文 献

1) 大田立男（1978）伊勢湾・三河湾の環境と生物水処理技術, 6, 61-67.
2) 愛知県水産試験場（1987）昭和61年伊勢湾・三河湾の赤潮発生状況, 愛知県水試研究業績 C しきゅ第70号, 1-58.
3) 吉田陽一（1980）赤潮の発生予察, 水産学シリーズ, 赤潮, 90pp., 恒星社厚生閣, 東京.
4) 愛知県（1978）伊勢湾三河湾の赤潮, 1-130pp.
5) 太田立男（1981）多変量解析法による三河湾赤潮発生海域の水質解析, 水質学会秋季大会(要)予稿集, 331pp.
7) 西日新聞（1987）7月16日朝刊「伊勢湾浄化の制約」
8) 岩崎英雄（1983）伊勢湾, 海の環境科学（平野敏編著), 351 pp., 恒星社厚生閣, 東京.
9) 岩崎英雄（1980）赤潮に関する近年の研究と研究の問題点, 105pp., 日本水産資源保護協会, 東京.
10) 太田立男（1983）伊勢湾表層の中植物プランクトンに起因する COD 濃度, 水質学会誌, 1, 1-6.
11) 太田立男（1988）沿岸海域環境調査の留意事項, 水質学会誌, 2, 43-46.
14) 三重県（1985）伊勢湾における赤潮発生の予測と管理による予警, 昭和59年度赤潮予察調査報告書, 22-27.
15) 日本気象協会（1984）港湾気象図要覧（伊勢湾三河湾）pp. 152.
17) 太田立男（1986）伊勢湾の塩水・リンおよびCOD の分布態様, 海水学会誌, 5, 310-319.