神通川水系での有機栄養細菌（浮遊性と付着性）の有機汚濁指標性について*

On the heterotrophic (planktonic and sessil) bacteria as an indicator of organic pollution in the Zinzu-River.

安田郁子（富山県立技術短期大学）
井山洋子（富山県高岡保健所）

1. はじめに

水中の細菌は、従来衛生的立場から重要視されており、一般細菌や大腸菌群は通常、細菌学的に安全な水であるかどうかを調べるために広く用いられてきている。また、これらの細菌が河川水の有機汚濁の程度を表す生物学的水質等級と関連性のあることも数多く報告されている（Sládeček 1968、津田 1972、倉沢ほか 1976、安田 1977）。さらに、川水中の好気性細菌栄養細菌（通性嫌気性細菌を含む）の数が、川水のBODと関連性が高く、川水の有機汚濁の敏感な指標種であるともいわれている（桜井 1975）。一方、川床の付着細菌については、多摩川における川床付着細菌（全細菌、有機栄養細菌）数が、汚濁化に伴って増加していることが示されている（TEZUKA et al., 1974）。しかし、付着細菌数の季節変化なども含めて有機汚濁に対する指標性を検討した例はまだみられない。川水中の浮遊細菌と川床付着の細菌は、その生活環境において、水中と生物膜という違いがある。生物膜中の付着細菌は有機汚濁の増減に応じて増減し、その増減速度は水温と高い相関性をもつ（AIKAKI 1979、相崎 1980）とされているので、付着細菌の増減に対しては有機汚濁以外の要因による影響も大きいことが考えられ、両細菌の有機汚濁に対する指標性を一貫に論じるこ

*本研究は、昭和54年度文部省環境科学特別研究「実験水路による底生生物の環境指標性の研究」における分担研究の一部である。
とは出来るない。著者らは、浮遊細菌および川床付着細菌の有機汚濁に対する指標性について検討するため、両細菌数と川水のＣＯＤの、夏から冬にかけての季節的变化を調査した。調査は富山県神通川水系の小河川（図1）を対象に、1979年8月から12月にかけて行なった。その後、若干の知見を得たので報告する。

2．方 法

有機栄養細菌は桜井培地（桜井 1967）を用い、25℃、72時間、コンタージョン法により培養した。細菌の採取にあたっては、川水中の浮遊細菌と、川床の石面付着細菌に分けた。付着細菌の採取方法は以下の通りである。減菌済みの、1㎠の穴のあいた金属製ふき取り棒を石の表面にあて、減菌したガーゼ試験管でいたわに棒をふきとり、10㎠の滅菌兼生理食塩液の中へ入れた。これを3個の石について行なった。これらを氷冷運搬し、数時間後にサーモミキサーでタンブン中の細菌を浮遊させた後検査に供した。

また、有機汚濁の理化学指標としてＣＯＤを用いた。川水中に含まれている、細菌による分解可能な有機物質の指標として、理化学的にはＢＯＤが最も適当であるが、富山県内河川の調査（安田・中村 1974）で、ＣＯＤと生物学的水質等級との間にかなり高い相関性がみられたことから、今回の検討に際しＣＯＤを有機汚濁の指標として用いた。ＣＯＤは、100℃における過マンガ酸カリ法（上水試験方法）により測定した。

調査時期は、1979年8月1日、9月12日、10月15日、12月3日である。調査地点は図1に示した神通川水系で、久婦須川、外雲橋（St.1）、井田川の高善寺橋（St.2）、新井田川橋（St.4）、神通川富山大橋（St.3）、そして川の問題川橋（St.5）、月見橋（St.6）の6地点である。なお生物学的水質判定では、St.1, 2が貧腐水性、St.3, 4がβ-中腐水性、St.5, 6がα-中腐水性であった。

3．結果と考察

3.1 有機栄養細菌の季節変化

図2に、有機栄養細菌の8月から12月までの変化を示した。図中の矢印は、9月末の台風時増水による生物膜の剝離時を示したものである。10月の調査は、この剝離後2週間の時である。

浮遊性有機栄養細菌（以下、浮遊細菌とする）は、St.1, 2の8月で、やや高い値を示しているほかは、あまり大きな変動はみられない。

付着性有機栄養細菌（以下、付着細菌とする）は、ほとんどの場合、浮遊細菌よりも多いが、季節的変動が大

図2 有機栄養細菌（付着性と浮遊性）の季節変化
き。剝離以後は12月まで増加しているが、増加の様相は地点により異なる。剝離後の増加傾向に対して、剝離前はSt.1 ～ 3の8, 9月の細菌数変化からわかるように、8月から9月にかけて増減がないかあるいは減少している。このように、生物膜剝離の前と後で細菌数の増減傾向が異なることや、秋から冬にかけて剝離後2.5ヶ月以上にわたって増加傾向が続いていることは、生物膜が増殖し剝離をくり返しており、それに伴って付着細菌が増減することや、生物膜の増殖と剝離の期間が冬ではより長く、付着細菌の増殖速度が低温ではより小さい（AIZAKI 1978, 1979, 相崎1980）ということによるものと考えられる。

3.2 浮遊細菌数と川水のCODの関係

各調査時の浮遊細菌数と川水のCODを対比させて図3に示した。

浮遊細菌数とCODの相関性は比較的高く、相関係数
r=0.77 (n=18)である。本調査河川においては、夏から冬にかけて概ねCODが0.5 ～ 1 mg/lの時、浮遊細菌は10^7 ～ 10^8細胞/mlである。したがって、ある一定の汚染段階に属する細菌数にかかわる幅があるが、有機汚染の程度に比例して浮遊細菌数が増加すること、しかも、この関係は夏から冬にかけての季節変化を含めても成り立つことがわかる。

また、本調査での生物学的水質判定の結果と比べると、おおよそCODが0.5 ～ 1mg/lの地点が高腐水性、1 ～ 2.5mg/lの地点がβ～α中腐水性であったが、桝井水庫を用いた場合の有機栄養細菌数は、一般細菌の数倍～数百倍になる（桝井、1975）ことを考慮すると、上述したCODの値と浮遊細菌数の関係は、倉沢ほか（1975）や井山（1976）による生物学的水質階級と一般細菌数の関係と近似している。

3.3 付着細菌数と川水のCODの関係

各調査時の付着細菌と川水のCODを対比させて図4 ～ 6に示した。図4からわかるように、8月から9月までの結果を総合すると、付着細菌数とCODとの相関係数（r）は0.04 (n=18)で、ほとんど相関性がない。しかし、採取時期別にみると、地点数が少ないという欠点はあるが調査の範囲では、8月と9月は逆相関 (r= -0.99)、10月と12月は順相関（10月：r=0.43、12月：r=0.79）の関係がみられ、10月は相関性が低いが、12月には比較的高い相関性を示している（図5, 6）。9月と10月の調査の間に、増水による生物膜の剝離があっ

図3 浮遊細菌と水のCOD

図4 付着細菌と水のCOD（8月～12月）

図5 付着細菌と水のCOD（8, 9月）
4. 要約

神通川水系の小河川における6地点を対象に、夏から冬にかけて、浮遊性及び川床付着性の両有機栄養細菌の数を調査を行った。両者の有機汚濁に対する相関性について検討した。その結果、以下のことがわかった。

(1) 同一地点においては、浮遊細菌数は季節的にあまり変動しないが、付着細菌数は大きく変動する。
(2) 浮遊細菌数は、夏から冬の季節変化を含めて、CODとの相関性が比較的高い。本調査河川においては、CODが0.5～1 mg/l の時10^4～10^5細胞/ml、CODが1～2.5 mg/l の時10^6細胞/mlの値が得られた。
(3) 付着細菌数とCODとの関係においては、生物膜の剥離が生じると相関性が大きく変わるなど、調査時期によって相関性が変動し、一定の相関性を保たない。
(4) 両者の有機栄養細菌のうち、川水の有機汚濁の直接受ける指標となりうるのは浮遊細菌数のみである。

引用文献
3) 相崎守弘 (1980) : 富栄養河川における付着微生物群集の発達にともなる現存量および光合成能の変化、陸水雑, 41(4); 225-234.
4) 井山洋子 (1976) : 生物学的水質階級と細菌数の関係、日処理生物誌, 12(1); 54-57.
5) 倉沢秀夫・青山英爾・篠部光光・谷藤美秀子・竹内真智子 (1975) : 淡水湖周辺河川の付着藻類と浮遊生物の季節変化、陸水富栄養化とその対策, 1; 22-30.
6) 桜井善雄 (1967) : 水中の一般細菌数検査法に関する2・3の検討, 日処理生物誌, 2(2); 21-27.
7) 桜井善雄 (1975) : 生物指標としてのバクテリア (河川)、環境と生物指標 2－水域編－, 46-53. 日本生物学会環境問題専門委員会制, 共立出版.
10) 津田松苗 (1972) : 水質汚濁の生態学, 240pp. 公害対策技術同友会, 東京.
11) 安田正志・中村郁子 (1974) : 河川における生物学的水質判定法の生態と理化学的水質調査、土木学会論文報告集, 228; 55-64.
12) 安田正志 (1977) : 九州地方河川における理化学的水質指標と生物学的水質判定の関連解析、1－68. 建設省九州地方建設局九州技術事務所・社団法人淡水分物研究所.