
A CASE STUDY: EVALUATION OF RESULTS AND SELECTION OF ADDITIONAL STUDIES

Chie FURIHATA

Department of Molecular Oncology, Institute of Medical Science, University of Tokyo,
4-6-1, Shirokanedai, Minato-ku, Tokyo 108, Japan

A standard battery of tests (bacterial reverse mutation assay, in vitro chromosomal aberration test and in vivo micronucleus test in Japan) is recommended for genotoxic study of chemicals. However, additional tests could be selected, especially when negative results are obtained from the standard battery or are expected from knowledge of the chemical's structure. Here I summarize a case study of "omeprazole".

Omeprazole is a proton pump inhibitor (H⁺/K⁺ ATPase inhibitor) (Fellenius et al., 1981) and is used as an anti-ulcer drug (Arnold and Koop, 1989). Life-long administration of omeprazole induced carcinoids of enterochromaffin-like (ECL) cell origin in the fundus in rats (Ekman et al., 1985; Havu, 1986) and mice (Betton et al., 1988). This unwanted side effect is thought to reflect the fact that pharmacological blockade of acid secretion results in hypergastrinemia, that long-standing hypergastrinemia gives rise to hyperplasia of ECL cells, and that carcinoids arise from the ECL cells (Hakanson and Sundler, 1990). Gastric carcinoid tumors in patients with Zollinger-Ellison syndrome on long-term omeprazole was once reported (Goldfain, et al., 1989). Genotoxicity of omeprazole is important to examine considering its carcinogenicity. The results of the short-term genotoxicity tests (bacterial reverse mutation assay, in vitro chromosome damage test, in vitro mouse lymphoma assay and the micronucleus test in mice) were all negative (Ekman et al., 1985; Evans, 1990). However, these results could be expected, because omeprazole genotoxicity tests were performed at neutral pH; the compound is converted though into active sulphenamide (Fig. 1) in acidic conditions (Beil et al., 1987). It is difficult to isolate sulphenamide and test it in ordinary genotoxicity tests because of its instability.

We gave omeprazole to rats by gastric tube, Fig. 1. Structure of omeprazole and its activation in acid.

This paper was presented at the 5th Satellite Symposium of the Japanese Society of Toxicological Sciences on July 24, 1996 in Fukuoka.

Correspondence: Chie FURIHATA at the above address.
made omeprazole active in the stomach and examined the genotoxicity in the stomach mucosa. We used unscheduled DNA synthesis (UDS) and DNA single strand scission as markers. For UDS, test groups of 5 male F344 rats, 8 weeks old, were given omeprazole, then killed after 4 h. The stomach pyloric mucosa was removed and cultured in the presence of 3H-thymidine for 2 h with or without hydroxyurea (inhibitor of replicative DNA synthesis). DNA was extracted from the tissue and the incorporation of 3H-thymidine into DNA was measured using a liquid scintillation counter; UDS and replicative DNA synthesis were then calculated. Omeprazole (30 and 100 mg/kg bw) induced UDS (Fig. 2) (Furihata et al., 1991; Evans, 1991; Furihata and Matsushima, 1991); however, some lots of omeprazole did not induce UDS. We conclude that omeprazole's ability to induce UDS in the rat stomach mucosa is equivocal. For DNA single strand scission tests, groups of 8 male F344 rats, 8 weeks old, were examined. Five rats were given omeprazole, a positive control was given 4-nitroquinoline 1-oxide and 2 negative controls were given H$_2$O and examined 2 h after administration. The stomach pyloric mucosa was removed and treated in lysis solution and fragmented DNA was eluted from 2 μ filters at pH 12.1. Omeprazole at doses of 30-500 mg/kg bw induced DNA single strand scission in some experiments but not in some other experiments. We examined a total of 45 rats with omeprazole. The result was statistically significant (p<0.01) by the Cochran-Armitage binomial trend test; however, a clear dose-relationship was not observed. We conclude that omeprazole is equivocal in induction of DNA single strand scission in the rat stomach mucosa (Fig. 3, Furihata et al., 1996). Mereto et al. (1993) reported that omeprazole did not induce DNA

![Graph](image1)

Fig. 2. UDS in the stomach pyloric mucosa in male F344 rats 4 h after oral administration of omeprazole (Furihata et al., 1991). Points show results of individual rats. Bars show mean at each dose. The same marker shows the result of the same rat in the presence and absence of HU at each dose. Values in the presence of HU at a dose of 100 mg/kg bw were significantly different from those at 0 dose by Student's t-test (p<0.05).

![Graph](image2)

Fig. 3. DNA single strand scission in the stomach pyloric mucosa of male F344 rats 2 h after omeprazole administration (Furihata et al., 1996). Points show results of individual rats. Bars show mean at each dose. C means historical controls. Dashed line suggests a border line of control group (mean ± 2.6 SD). 4NQO is a concurrent positive control. Results of omeprazole are significantly different from control by Cochran-Armitage binomial trend test (p<0.01).
fragmentation in gastric mucosa and liver of Sprague-Dawley rats at a dose of 100 mg/kg body wt. However, the results may be ascribed to a lower sensitivity of their assay, due to pretreatment before alkaline elution or temperature or elution flow rate differences.

Interaction of 14C-omeprazole with DNA was observed in rat stomach pyloric mucosa (36 pmol omeprazole/mg DNA) 1 h after administration (Phillips et al., 1992). However, DNA adducts could not be confirmed. The author suggested non-covalent interaction.

References