Calcipotriol (MC903) のラットを用いた
経皮投与による 4 週間反復投与毒性試験
および 4 週間回復試験

北垣 弘順，鈴木豊志郎，小池 嘉秀，
小野 正博*，白川 清美*，永田 充宏*，小西 良士*

株式会社 日本セイイケン総合研究所
〒433 静岡県浜松市葵町95−10
*帝國製薬株式会社 研究開発本部
〒769-26 香川県大川郡大内町三本松567番地

A 4-WEEK REPEATED PERCUTANEOUS DOSE
TOXICITY STUDY OF CALCIPOTRIOL (MC903)
FOLLOWED BY A 4-WEEK RECOVERY
TEST IN RATS

Tadaharu KITAGAKI, Toshiro SUZUKI, Yoshihide KOIKE,
Masahiro ONO*, Kiyomi SHIRAKAWA*, Mitsuhiro NAGATA*
and Ryoji KONISHI*

Japan Seigiken Research Center Co., Ltd.,
95-10 Aoi-cho, Hamamatsu, Shizuoka 433, Japan
*Research and Development Division, Teikoku Seiyaku Co., Ltd.,
567 Sanbonmatsu, Ochi-cho, Ohkawa-gun, Kagawa 769-26, Japan

(Received November 7, 1995 ; Accepted March 8, 1996)

ABSTRACT — A 4-week repeated percutaneous dose toxicity of calcipotriol
(MC903), an anti-psoriatic agent, followed by a recovery for 4 weeks was studied in
Slc: SD rats at doses of 4, 20 and 100 μg/kg/day as low, mid and high dose levels.

1. One male and female at high dose died probably due to stress and circulatory
failure. One female at mid dose died with clonic convulsion considered to be result
in attached error of a neck collar. Survival of rats showed reddish tear, reddening
and desquamation of the skin at application site, and vocalization at all groups includ-
ing control. Furthermore, abnormal gait, dirty hair, emaciation and opacity of the
eyeball surface in both sexes were observed at high dose.

2. A decreased body weight and a slight increased water consumption in both
sexes, and a decreased food consumption in males were observed at high dose.
3. An increased incidence of corneal opacity was noted significantly in both sexes as compared with control at high dose. Urinalysis revealed an increased Ca excretion in both sexes at more than mid dose, and lower pH in females at mid dose and in both sexes at high dose, and a decreased urinary volume in males at high dose. The increases of neutrophil and serum β-globulin ratios in females, and serum Ca level in both sexes were observed at high dose. The increased mineralization of the cornea in males at mid dose and in both sexes at high dose, and of the kidney in males at high dose were observed. At the skin of application site, cellular infiltration in the epidermis and dermis in both sexes at more than mid dose was observed. Furthermore, hyperplasia of the squamous cell in females, and hyperkeratosis in the epidermis and hypertrophy of the sebaceous gland in both sexes were observed at high dose.

4. After a 4-week recovery period, the changes related with application disappeared except for opacity of the eyeball surface and cornea, and mineralization of organs.

5. On the basis of results obtained in the present study, it is considered that 4 µg/kg/day is the no-toxic dose of MC903 applied percutaneously in both sexes of rats.

KEY WORDS : Anti-psoriasisc agent, Calcipotriol, MC903, 4-week repeated dose toxicity, Percutaneous application, Rats

緒 言

Calcipotriol（以下、MC903 と略す）は、Leo Pharmaceutical Products Ltd. (Denmark) で開発された新規乾燥治療剤である。本剤はビタミン D₃ の活性本体である 1α,25(OH)₂D₃ の類縁化合物で、表皮細胞に対する細胞増殖抑制作用および分化誘導作用を有し、カルシウム代謝に及ぼす作用は活性型ビタミン D₃ の 1/100 〜 1/200 と報告されている（Binderup and Bramm, 1988）。欧米では本剤の 50 µg/g 浓度の軟膏が臨床適用されており、本邦においても安全な乾燥治療剤として有用性が期待されている。

今回、著者らは MC903 の安全性評価の一環として、ラットを用いた慢性投与による4週間反復投与毒性試験および4週間反復試験を実施したので、その成績を報告する。

実験材料および方法

1. 被験動物

本試験には、Lot No. 9231-18（純度：99.1%）のMC903を使用した。

MC903 は、化学名を（+)-(5Z,7E,22E,24S)-24-cyclopropyl-9,10-secochol-a-5,7,10,(19),22-tetraene-1α,3β,24-triol と称し、分子量412.61で、エタノールに溶けやすく、クロロホルムおよびプロピレングリコールにやや溶けやすく、水および流動パラフィンにはほとんど溶けない白色の結晶性粉末である。

MC903の化学構造式をFig. 1に示した。
3. 投与量および群構成

投与量は、MC903のラットを用いた13週間経皮反復投与毒性試験（Skov et al., 未発表）の結果を参考に設定した。すなわち、6、18および54μg/kg/dayを背部剃毛皮膚に開放塗布し、雌雄に共通した変化として、54μg/kg群で体重増加抑制、尿pHの低下、皮膚の発赤・軽度の扁平上皮細胞の増生、腎臓重量の減少、腎臓に中等度の石灰沈着が、18μg/kg群で尿pHの低下、皮膚の発赤・軽度の扁平上皮細胞の増生、腎臓にごく軽度の石灰沈着が、6μg/kg群で腎臓にごく軽度の石灰沈着が認められた。これらを総合し、4週間の経皮反復投与を考慮して、最高用量を100μg/kg/dayとし、中および最低用量をそれぞれ20および1μg/kg/dayとする計算方法（公算5）を設定した。

群構成は、3群タイプ群溶媒のみを投与する対照群を加えて計4群とした。動物は、体重の層別抽出に より無作為に、対照群および100μg/kg群に各群雌雄15匹、4および20μg/kg群に各群雌雄10匹を配置した。なお、対照群および100μg/kg群に各群雌雄1匹を解剖動物とした。

4. 投与液の調製および投与方法

被験物質の所定量を秤量し、エタノール・プロピレンジリル・注射用蒸留水の6:1:3混合液に溶解して最高用量群の投与液を調製後、段階希釈して中・最低用量の投与液を調製した。投与は、MC903の安定性試験の結果を踏まえ、遮光・冷蔵保管し、調製後7日以内に使用した。

投与経路は、臨床適用経路の経皮を選択し、4週間毎に1回の連続経皮投与とした。動物の背部に剃毛（電気バリカン、Model 808、大東亜機工業㈱）および剃毛（電気バリカン、RM-X5型、日立製作所）し、体表面積の約10%（20cm²）を目安に、塗布可能な面積の投与部位を作製した。投与液または溶媒の0.05ml/100gをガラス製注射筒を用いて、投与部位に可能な限り均一に塗布した。投与容量は、最 近時に測定した休重を基準に算出した。投与部位をアルミホイルで被覆し、さらにペーパータオルを貼付した保冷帯で動物の腹部まで被覆した。さらに、動物には被験物質の経口摂取を防止するため、首枷（KN-332、㈱夏目製作所）を装着した。投与部位には投与開始前日に作製し、投与期間中の剃毛は必要に応じて実施した。なお、回復期間中の動物は無処置で飼育した。

5. 観察および検査項目

1）一般状態の観察

一般状態と死体例の有無を、投与開始時から回復期間を通じて毎日午前・午後の2回、全例について観察した。

2）体重、摂飲量および摂水量の測定

体重、摂飲量および摂水量は、投与開始直前に1回、以降は回復期間終了時まで毎週1回測定した。動物1匹当りの摂飲量および摂水量は、前日から約24時間の消費量を測定して求めた。

3）眼科的検査

投与開始前と投与期間最終週に各群雌雄各5例、回覆期間最終週に回復群の雌雄全例の両眼に散瞳剤（ミドリンP、参天製薬㈱）を点眼後、スリットランプ（SL-5型、興和製）で前眼帯・中間透過光を観察し、底面カメラ（RC-2型、興和製）で眼底を撮影して検査した。なお、対照群および100μg/kg
群では雌雄とも投与開始前、投与期間最終週および回復期間最終週を通して同一個体を検査した。

4）臨床検査
臨床検査項目および方法を Table 1 に示した。

1）尿検査
投与期間および回復期間終了時に、動植物を検査前日の夕刻から個別に代謝カバーにより収容し、絶食下で採取した約16時間の薬尿について検査した。なお、電解質およびクリアチニンについては、尿量当りの排泄量を算出した。

2）血液学的検査
投与期間および回復期間終了時に、解剖動物（約16時間絶食）をエーテル麻酔し、硝素浮腫より採血後、抗凝固剤（Anglot/ET、日本商事㈱）を添加した血液について検査した。ただし、凝固検査は腹大動脈より採血後、3.8%クエン酸ナトリウム水溶液で処理して得た血漿を用いて行った。

3）血液化学的検査
投与期間および回復期間終了時に、血液学的検査に供した動物を再びエーテル麻酔し、腹大動脈から採血後直ちに永冷して約30分後に遠心分離して得た血清について検査した。

5）病理学的検査

1）剖検および器官重量測定
投与期間および回復期間終了時に、血液化学的検査に供した動物をエーテル麻酔下で腹大動脈より放血致死させ、外表および器官の異常の有無を肉眼的に観察した後、肝臓、脾臓、腎臓（左右）、肺（左右）、心臓、胸腺、唾液腺（含む顔下腺・舌下腺、左右）、脳、下垂体、甲状腺、精巣、前立腺（含む尿道）、精果（左右）、卵巢（左右）および子宮を摘出して重量（絶対重量）を測定し、剖検前日（絶食前）の体重に対する比重量（相対重量）を算出した。

2）病理組織学的検査
重量測定器官に加え、大動脈、気管、気管支、舌、食道、胃（前胃、腺胃）、小腸（十二指腸、空腸、回腸）、大腸（盲腸、結腸、直腸）、肺臓、顔下リンパ節、腸間膜リンパ節、脊髄、上皮小体、縁条、精巣上体、陰卵、乳頭（雄）、皮膚、胸骨、大腿骨（含む骨髄）、骨格筋、坐骨神経、投与部皮膚および病変部を10％ホルマリン液で、眼球および Harder 腺を Davidson 液で固定し、常法により H.E. 染色標本を作製して鏡検した。

6）統計的処理
眼科学的検査、尿検査（半定量・沈渣値）、剖検および病理組織学的検査を除く測定値について、全群の等分散性を Bartlett 法で検定した。等分散の場合は、一元配置分散分析を実施し、有意であれば Dunnett 法（群間線列数が同じあるいは Scheffé 法（群間数値が異なる）で多重比較を行った。不等分散の場合は、Kruskal-Wallis 検定を実施し、有意であれば Dunnett 型あるいは Scheffé 型の順位による多重比較を行った。回復期間中および回復期間終了時の測定値は、2群（対照群と高用量群）の等分散性について F 検定を行った。等分散の場合は Student の t 検定、不等分散の場合は Aspin-Welch の t 検定を行った。尿半定量値は、Wilcoxon の順位和検定を実施し、眼科学的検査および病理組織学的検査における発生頻度は、Fisher の直接確率検定法により対照群との有意差を検定した。

実験結果

1）死亡動物および一般状態
1）死亡動物
投与期間中、4 µg/kg 群の雌 1 例、100 µg/kg 群の雌雄各 1 例が死亡した。

4 µg/kg 群の雌 1 例は、投与 20 日の投与後 5 分に激しく嘔吐、間代性痙攣を発現して死亡した。死因は、死亡時の行動、顔察の体重推移および剖検における肺の赤色化から推察して、首脈の強度で頸部圧迫による呼吸困難と判断した。一方、100 µg/kg 群の雌雄各 1 例に投与部皮膚の発赤・落屑、嘔吐が投与 3 日から死亡日までほぼ継続して認められ、雄は剥皮を伴い投与 9 日日に、雌は投与 14 日から剥皮が継続して投与 17 日日にそれぞれ死亡した。なお、剖検で胸腺萎縮、心臓白色化および剥皮、組織学的に胸腺出血・リンパ球核崩壊および心筋線維変性が認められた。
Table 1. Items and methods for laboratory examinations in rats applied percutaneously with calcipotriol for 4 weeks.

<table>
<thead>
<tr>
<th>Examination</th>
<th>Item</th>
<th>Abbreviation</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urinalysis (6 hr accumulated)</td>
<td>Urine volume</td>
<td>UV</td>
<td>Measuring weights</td>
</tr>
<tr>
<td></td>
<td>Specific gravity</td>
<td>USG</td>
<td>Refractometry(^1)</td>
</tr>
<tr>
<td></td>
<td>Occult blood</td>
<td>OB</td>
<td>N-Multistix</td>
</tr>
<tr>
<td></td>
<td>Ketone bodies</td>
<td>Ket</td>
<td>N-Multistix</td>
</tr>
<tr>
<td></td>
<td>Glucose</td>
<td>Glu</td>
<td>N-Multistix</td>
</tr>
<tr>
<td></td>
<td>Protein</td>
<td>Pro</td>
<td>N-Multistix</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>pH</td>
<td>N-Multistix</td>
</tr>
<tr>
<td></td>
<td>Bilirubin</td>
<td>Bil</td>
<td>N-Multistix</td>
</tr>
<tr>
<td></td>
<td>Urobiolinigen</td>
<td>Urogen</td>
<td>N-Multistix</td>
</tr>
<tr>
<td></td>
<td>Creatinine</td>
<td>Cre</td>
<td>Jaffé method(^2)</td>
</tr>
<tr>
<td></td>
<td>Sodium</td>
<td>Na</td>
<td>Flame photometry(^3)</td>
</tr>
<tr>
<td></td>
<td>Potassium</td>
<td>K</td>
<td>Flame photometry(^3)</td>
</tr>
<tr>
<td></td>
<td>Chloride</td>
<td>Cl</td>
<td>Potentiometric method(^5)</td>
</tr>
<tr>
<td></td>
<td>Inorganic phosphorus</td>
<td>IP</td>
<td>Molybdic acid direct method(^5)</td>
</tr>
<tr>
<td></td>
<td>Calcium</td>
<td>Ca</td>
<td>OCPC method(^5)</td>
</tr>
<tr>
<td></td>
<td>Urine sediment</td>
<td></td>
<td>Microscopic examination</td>
</tr>
<tr>
<td>Hematology</td>
<td>Erythrocyte</td>
<td>RBC</td>
<td>Electronic counting method(^6)</td>
</tr>
<tr>
<td></td>
<td>Hematocrit</td>
<td>Ht</td>
<td>Electronic counting method(^6)</td>
</tr>
<tr>
<td></td>
<td>Hemoglobin</td>
<td>Hb</td>
<td>Cyanmethemoglobin method(^6)</td>
</tr>
<tr>
<td></td>
<td>Mean corpuscular volume</td>
<td>MCV</td>
<td>Calculated from Ht and RBC</td>
</tr>
<tr>
<td></td>
<td>Mean corpuscular hemoglobin</td>
<td>MCH</td>
<td>Calculated from Hb and RBC</td>
</tr>
<tr>
<td></td>
<td>Mean corpuscular hemoglobin conc.</td>
<td>MCHC</td>
<td>Calculated from Hb and Ht</td>
</tr>
<tr>
<td></td>
<td>Reticuloocyte</td>
<td>Retic</td>
<td>Microscopic examination (Brecher stain)</td>
</tr>
<tr>
<td></td>
<td>Leukocyte</td>
<td>WBC</td>
<td>Electronic counting method(^6)</td>
</tr>
<tr>
<td></td>
<td>Differential leukocyte count</td>
<td>Lym</td>
<td>Microscopic examination (Wright-Giemsa stain)</td>
</tr>
<tr>
<td></td>
<td>Lymphocyte</td>
<td>Lym</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eosinophil</td>
<td>Eos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monocyte</td>
<td>Mon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basophil</td>
<td>Bas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neutrophil</td>
<td>T-Neu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Band neutrophil</td>
<td>Band</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Segmented neutrophil</td>
<td>Seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blood platelet</td>
<td>BP</td>
<td>Electronic counting method(^6)</td>
</tr>
<tr>
<td></td>
<td>Prothrombin time</td>
<td>PT</td>
<td>Coagulometer(^7)</td>
</tr>
<tr>
<td></td>
<td>Activated partial thromboplastin time</td>
<td>APTT</td>
<td>Coagulometer(^7)</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>Total protein</td>
<td>TP</td>
<td>Biuret method(^6)</td>
</tr>
<tr>
<td></td>
<td>Albumin</td>
<td>ALB</td>
<td>BCG method(^9)</td>
</tr>
<tr>
<td></td>
<td>Albumin / Globulin ratio</td>
<td>A/G</td>
<td>Calculated from TP and Alb</td>
</tr>
<tr>
<td></td>
<td>Protein fractions</td>
<td></td>
<td>Cellulose acetate membrane electrophoresis(^8)</td>
</tr>
<tr>
<td></td>
<td>Albumin</td>
<td>Alb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Globulin</td>
<td>Globulin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total cholesterol</td>
<td>T. Cho</td>
<td>CE-COD-POD method(^6)</td>
</tr>
<tr>
<td></td>
<td>Triglyceride</td>
<td>Tg</td>
<td>LPL-GK-GPO-POD method(^9)</td>
</tr>
<tr>
<td></td>
<td>Phospholipid</td>
<td>Plp</td>
<td>PLD-COD-POD method(^9)</td>
</tr>
<tr>
<td></td>
<td>Blood urca nitrogen</td>
<td>BUN</td>
<td>Urease-GLDH method(^7)</td>
</tr>
<tr>
<td></td>
<td>Creatinine</td>
<td>Cre</td>
<td>Jaffé method(^4)</td>
</tr>
<tr>
<td></td>
<td>Glutamic oxaloacetic transaminase</td>
<td>GOT</td>
<td>NADH UV-rate assay method(^5)</td>
</tr>
<tr>
<td></td>
<td>Glutamic pyruvic transaminase</td>
<td>GPT</td>
<td>NADH UV-rate assay method(^5)</td>
</tr>
<tr>
<td></td>
<td>Alkaline phosphatase</td>
<td>ALP</td>
<td>p-NPP method(^7)</td>
</tr>
<tr>
<td></td>
<td>Lactic dehydrogenase</td>
<td>LDH</td>
<td>UV-rate assay method(^4)</td>
</tr>
<tr>
<td></td>
<td>Creatinekinase</td>
<td>CPK</td>
<td>UV-rate assay method(^3)</td>
</tr>
<tr>
<td></td>
<td>Glucose</td>
<td>Glu</td>
<td>GLK-G6PDH method(^9)</td>
</tr>
<tr>
<td></td>
<td>Total bilirubin</td>
<td>T. Bil</td>
<td>Azobilirubin method(^9)</td>
</tr>
<tr>
<td></td>
<td>Sodium</td>
<td>Na</td>
<td>Flame photometry(^3)</td>
</tr>
<tr>
<td></td>
<td>Potassium</td>
<td>K</td>
<td>Flame photometry(^3)</td>
</tr>
<tr>
<td></td>
<td>Chloride</td>
<td>Cl</td>
<td>Potentiometric method(^9)</td>
</tr>
<tr>
<td></td>
<td>Inorganic phosphorus</td>
<td>IP</td>
<td>Fiske-SubbaRow method(^9)</td>
</tr>
<tr>
<td></td>
<td>Calcium</td>
<td>Ca</td>
<td>OCPC method(^5)</td>
</tr>
</tbody>
</table>

\(^1\) Refractometer (Atago SPR-T2)
\(^2\) Automatic analyzer (Roche COBAS FARA)
\(^3\) Flame photometric analyzer (Nippon Bunko FLAME 30C)
\(^4\) Automatic analyzer (Hitachi 7160-10)
\(^5\) Chloride counter (Hiranuma CL-3)
\(^6\) Coulter counter T660
\(^7\) Coagulometer (DADE AUTO-FI)
\(^8\) Automatic electrophoresis (Joko CTE-150)
\(^9\) CHLOR METER (Joko C-200AP)
2）生存動物

投与期間中，投与部皮膚の発赤が対照群の雄少数例・雌半数例，4 μg/kg 群の雄半数例・雌多数例，20 および 100 μg/kg 群の雌雄全例に認められた。発赤は投与 3 日ないし 5 日頃から発現し，対照群，4 および 20 μg/kg 群ではほぼ 15 日間，100 μg/kg 群では投与期間終了時まで継続して認められた。発赤に併発して，皮膚の落屑および発疹が観察された。また，眼瞼周囲赤色汚れが各群の雌雄多数例に投与 1 日からほぼ 8 日頃まで継続し，さらに 100 μg/kg 群では爪先立ち歩行，被毛失沢，脱毛，眼球表面の一部白濁が雌雄少数例から半数例に認められた。

回復期間中，100 μg/kg 群に投与部皮膚の発赤および落屑がそれぞれ雌雄全例・雌 1 例および雄全例・雌少数例，脱毛が雌 1 例に認められたが，2 週間以内に消失した。眼球表面の一部白濁の回復は認められなかった。

2. 体重

体重の推移を Fig. 2 に示した。

投与期間中，体重増加抑制が 100 μg/kg 群の雌雄に認められたが，その他の群では対照群とほぼ同様に推移した。

回復期間中，投与期間終了時から回復期間 1 週にかけて，対照群および 100 μg/kg 群の体重増加が増加した。すなわち，投与期間終了時の体重に対する増加率は，対照群の雄で 12.5%，雌で 6.1%，100 μg/kg 群の雄で 21.0%，雌で 16.3% であった。

3. 摂 餌 量

摂餌量の推移を Fig. 3 に示した。

投与期間中，減少傾向が 100 μg/kg 群の雄に認められたが，その他の群では対照群とほぼ同様に推移した。

回復期間中，投与期間終了時から回復期間 1 週にかけて，対照群および 100 μg/kg 群の雄の摂餌量が増加した。すなわち，投与期間終了時の摂餌量に対する増加率は，対照群で 32.4%，100 μg/kg 群で 53.6% であった。

4. 摂水量

摂水量の推移を Fig. 4 に示した。

投与期間中，100 μg/kg 群の雄では投与 21 日，雌では投与期間終了時後に有意に増加し，雌雄に増加傾向が認められた。その他の群では対照群と比べ，有

![Fig. 2. Body weight of rats applied percutaneously with calcipotriol for 4 weeks.](image)
A 4-week percutaneous toxicity study of calcipotriol in rats.

Fig. 3. Food consumption of rats applied percutaneously with calcipotriol for 4 weeks.

Fig. 4. Water consumption of rats applied percutaneously with calcipotriol for 4 weeks.
意的な変化は認められなかった。
回復期間中、投与期間終了時から回復期間1週にかけて、摂水量が対照群の雌で増加し、100 μg/kg群の雄で減少した。すなわち、投与期間終了時の摂水量に対する増加率は、対照群の雄で19.2％、減少率は100 μg/kg群の雌で31.4％であった。

5. 眼科的検査
投与期間最終週に、角膜表面の一部混濁が各群雄各5例中、20 μg/kg群で雄2例・雌3例、100 μg/kg群で雄全例・雌4例に観察された。対照群と比べ、100 μg/kg群の雌雄に発生頻度の有意な増加が認められた。しかし、混濁の程度は、20および100 μg/kg群の雌雄ともほぼ同等であった。
回復期間最終週に、角膜表面の一部混濁が投与期間最終週に検査した100 μg/kg群の雌雄の同例（雄全例・雌4例）に観察され、回復は認められなかった。
なお、各検査時に、各群の雌雄の視覚、強視、虹彩、眼圧、水晶体、硝子体および眼底に異常は認められなかった。

6. 尿検査
変化が認められた検査項目と関連項目をTable 2に示した。
投与期間終了時に、20 μg/kg群以上の雌雄にカルシウム排泄量の増加、20 μg/kg群の雌および100 μg/kg群の雌雄にpHの低下、100 μg/kg群の雌に尿量およびカリウム・無機リン・クレアチニン排泄量の減少が認められた。その他の検査項目には、対照群と比べ有意な変化は認められなかった。
回復期間終了時に、100 μg/kg群の雌にカルシウム排泄量の減少が認められた。その他の検査項目には、対照群と比べ有意な変化は認められなかった。

7. 血液学的検査
変化が認められた検査項目と関連項目をTable 3に示した。
投与期間終了時には、100 μg/kg群の雌にリンパ球比率の減少、分葉核好中球比率の増加に伴う総好中球比率の増加が認められた。その他の検査項目には、対照群と比べ有意な変化は認められなかった。
回復期間終了時に、対照群と比べ、各検査項目に有意な変化は認められなかった。

8. 血液化学的検査
変化が認められた検査項目と関連項目をTable 4に示した。
投与期間終了時には、100 μg/kg群の雌にβ-グロブリン比率およびCPK活性の増加、雌雄にカルシウム濃度の増加が認められた。その他の検査項目には、対照群と比べ有意な変化は認められなかった。
回復期間終了時に、100 μg/kg群の雌にアルブミン比率の減少、α-グロブリン比率の増加が認められた。その他の検査項目には、対照群と比べ有意な変化は認められなかった。

9. 剖検所見
投与期間終了時には、生存例では20 μg/kg群の雌1例、100 μg/kg群の雌2例に眼球の白色点、100 μg/kg群の雌2例に前房粘液が認められた。一方、死亡例では、4 μg/kg群の雌1例に肺の赤色変化、100 μg/kg群の雌1例に肺の赤色変化、胃粘膜の拡張、同群の雌1例に胸腺の萎縮、心臓の白変化、胃の透明変厚が認められた。
回復期間終了時には、100 μg/kg群の雌2例・雌3例に眼球の白色点が認められた。
その他の所見は、MC903投与との関連および用量依存性がないか、少数例あるいは単発性であった。

10. 器官重量
変化が認められた器官の絶對・相対重量をTable 5およびTable 6に示した。
投与期間終了時には、100 μg/kg群の雌に脳・心臓・脾臓・胸腺・肝臓・唾液腺（左右）・前立腺・精巣の絶對重量の減少と脳・肺・精巣（左右）の相対重量の増加、雄雄に腎臓・副腎相対重量（左右）の増加が認められた。その他の器官には、対照群と比べ有意な変化は認められなかった。
回復期間終了時には、100 μg/kg群の精巣絶對重量（左右）の減少、雌に肺相対重量の増加が認められた。その他の器官には、対照群と比べ有意な変化は認められなかった。

11. 病理組織学的検査
変化が認められた所見とその他の器官・組織の主要な所見をTable 7に示した。

Vol. 21 Suppl. II
Table 2. Urinalysis in rats applied percutaneously with calcipotriol for 4 weeks followed by 4 weeks recovery.

<table>
<thead>
<tr>
<th>Sex</th>
<th>Dose (μg/kg)</th>
<th>Application</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n UV pH K Ca IP Cre</td>
<td>n UV pH K Ca IP Cre</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(ml/16 hr) (mEq/16 hr) (mEq/16 hr) (mg/16 hr) (mg/16 hr)</td>
<td>(ml/16 hr) (mEq/16 hr) (mEq/16 hr) (mg/16 hr) (mg/16 hr)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0 10 14 6.3 1.198 0.0127 19.37 7.65</td>
<td>5 11 6.8 1.235 0.0088 14.83 8.78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>± 6.4 ± 0.26 ± 0.2255 ± 0.00269 ± 4.303 ± 0.497</td>
<td>± 5.0 ± 0.27 ± 0.2996 ± 0.00211 ± 3.864 ± 1.569</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 10 12 6.5 1.172 0.0179 17.77 7.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>± 4.8 ± 0.37 ± 0.1599 ± 0.00892 ± 2.598 ± 0.719</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 10 13 6.4 1.071 0.0412** 16.34 7.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>± 6.8 ± 0.39 ± 0.2219 ± 0.02062 ± 3.926 ± 0.891</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 9 6* 5.3*** 0.579*** 0.0536** 11.34*** 4.40***</td>
<td>5 10 6.7 1.309 0.0089 16.02 8.94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>± 4.4 ± 0.36 ± 0.2240 ± 0.04636 ± 3.785(8) ± 1.099(8)</td>
<td>± 4.6 ± 0.27 ± 0.1404 ± 0.00191 ± 2.706 ± 1.225</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0 10 10 6.2 0.752 0.0341 13.26 4.16</td>
<td>5 9 6.4 0.561 0.0208 10.19 4.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>± 4.8 ± 0.42 ± 0.2193 ± 0.02374 ± 2.768 ± 0.613</td>
<td>± 3.6 ± 0.42 ± 0.0068 ± 0.00506 ± 1.966 ± 0.663</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 9 11 6.1 0.785 0.0473 14.60 4.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>± 6.0 ± 0.55 ± 0.2686 ± 0.03376 ± 4.166 ± 0.961</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>20 10 10 5.6* 0.797 0.0903* 16.08 4.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>± 5.6 ± 0.37 ± 0.1752 ± 0.04391 ± 3.565 ± 0.862</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 9 9 5.1*** 0.794 0.0950* 17.34 3.46</td>
<td>5 11 6.2 0.636 0.0123* 10.72 5.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>± 4.2 ± 0.22 ± 0.2714 ± 0.04644 ± 6.240 ± 0.945</td>
<td>± 2.9 ± 0.27 ± 0.0949 ± 0.00476 ± 1.034 ± 0.504</td>
<td></td>
</tr>
</tbody>
</table>

Values represent mean ± S.D.
Figure in parentheses represent number of rats examined.
*, **, ***: Significantly different from 0 μg/kg group (P<0.05, 0.01, 0.001).
Table 3. Hematological findings in rats applied percutaneously with calcipotriol for 4 weeks followed by 4 weeks recovery.

<table>
<thead>
<tr>
<th>Sex</th>
<th>Dose (µg/kg)</th>
<th>Application</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Lym</td>
<td>T-Neu</td>
</tr>
<tr>
<td>Male</td>
<td>0</td>
<td>10</td>
<td>75.6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10</td>
<td>79.2</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>10</td>
<td>75.1</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>9</td>
<td>73.3</td>
</tr>
</tbody>
</table>

Female	0	10	80.5	± 8.15	17.5	± 8.20	17.5	5	78.0	± 3.89	20.0	± 3.46	19.8	
	4	9	76.4	± 8.61	21.8	± 8.72	21.7	5	83.4	± 3.38	15.4	± 2.58	15.4	
	20	10	74.8	± 6.67	23.1	± 6.48	23.0	5	83.4	± 3.38	15.4	± 2.58	15.4	
	100	9	65.1**	± 7.22	34.1***	± 7.90	33.9***	± 7.78	5	73.2	±12.62	25.1	±12.42	24.9

Values represent mean ± S.D.

, *: Significantly different from 0 µg/kg group (P<0.01, 0.001).

投与期間終了時に，MC903 投与に関連すると考えられる所見の発生頻度が，対照群と比べて有意に増加した。すなわち，生存例の投与部皮膚において，20 µg/kg 群では雌雄各10例中，雄7例に表皮あるいは真皮の細胞浮遊，100 µg/kg 群では雌雄各9例中，雄4例・雌6例に角化亢進，雌雄全例に表皮あるいは真皮の細胞浮遊，皮脂腺の肥大，雌全例に扁平上皮細胞の増生（Photo 1）が認められた。100 µg/kg 群の雄全例に，腎臓の鉄蓄積（Photo 2）が認められた。

その他，少数例の変化として，20 µg/kg 群では角膜（雄2例），100 µg/kg 群では角膜（雌3例）・心臓動脈壁（雄3例）・胸腺粘膜（雄1例）にそれぞれ鉄蓄積が認められた。

死亡例では，4 µg/kg 群の雌に肺・腎臓のうっ血，投与部皮膚の角化亢進・皮脂腺の肥大・扁平上皮細胞の増生が認められた。100 µg/kg 群の雄に肺のうっ血・出血・マクロファージ内の色素沈着，肝臓のうっ血，腎臓の鉄蓄積，尿細管上皮細胞の壊死，雌心筋線維の変性，顕微リンパ球リンパ球核萎縮，胸腺の出血，雌雄に投与部皮膚の細胞浮遊・角化亢進・皮脂腺肥大・扁平上皮細胞の増生，胸腺のリンパ球萎縮が認められた。

回復期間終了時に，対照群と比べ発症頻度に有意差は認められなかったが，100 µg/kg 群で，雌雄各5例中，腎臓に中等度の囊胞（雄3例・雌1例）・リンパ球浸潤（雌2例）・鉄蓄積（雌全例・雌2例）が認められた。さらに，心臓動脈壁（雌2例）・角膜（雌3例・雌1例）・大動脈・舌・骨格筋内動脈壁・胃腸膜（各雌1例）にそれぞれ鉄蓄積が認められた。なお，投与部皮膚の変化は雌雄とも観察されなかった。

その他の所見は，MC903 投与との関連および用量依存性がないか，単発性あるいは少数例の変化で
Table 4. Biochemical findings in rats applied percutaneously with calcipotriol for 4 weeks followed by 4 weeks recovery.

<table>
<thead>
<tr>
<th>Sex</th>
<th>Dose (µg/kg)</th>
<th>n</th>
<th>Alb (%)</th>
<th>Globulin (%)</th>
<th>CPK (IU/l)</th>
<th>Ca (mEq/l)</th>
<th>n</th>
<th>Alb (%)</th>
<th>Globulin (%)</th>
<th>CPK (IU/l)</th>
<th>Ca (mEq/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>β</td>
<td>γ</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0</td>
<td>10</td>
<td>57.4</td>
<td>18.6</td>
<td>4.7</td>
<td>128</td>
<td>4.44</td>
<td>5</td>
<td>53.0</td>
<td>17.7</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>± 1.13</td>
<td>± 0.54</td>
<td>± 0.69</td>
<td>± 20.6</td>
<td>± 0.349</td>
<td>± 0.71</td>
<td>± 1.23</td>
<td>± 0.62</td>
<td>± 24.9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10</td>
<td>56.5</td>
<td>19.8</td>
<td>4.6</td>
<td>128</td>
<td>4.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>± 1.79</td>
<td>± 1.12</td>
<td>± 0.56</td>
<td>± 18.1</td>
<td>± 0.273</td>
<td>± 1.23</td>
<td>± 0.62</td>
<td>± 24.9</td>
<td>± 0.293</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>10</td>
<td>57.9</td>
<td>19.3</td>
<td>4.3</td>
<td>119</td>
<td>4.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>± 1.85</td>
<td>± 1.24</td>
<td>± 0.85</td>
<td>± 31.9</td>
<td>± 0.201</td>
<td>± 1.24</td>
<td>± 0.62</td>
<td>± 24.9</td>
<td>± 0.293</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>9</td>
<td>57.7</td>
<td>19.2</td>
<td>5.4</td>
<td>120</td>
<td>5.03***</td>
<td>5</td>
<td>54.8</td>
<td>17.8</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>± 5.39</td>
<td>± 1.27</td>
<td>± 0.78</td>
<td>± 20.3</td>
<td>± 0.246</td>
<td>± 2.88</td>
<td>± 0.71</td>
<td>± 0.62</td>
<td>± 53.4</td>
</tr>
<tr>
<td>Female</td>
<td>0</td>
<td>10</td>
<td>61.6</td>
<td>17.7</td>
<td>5.5</td>
<td>121</td>
<td>4.67</td>
<td>5</td>
<td>60.5</td>
<td>18.3</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>± 2.09</td>
<td>± 0.78</td>
<td>± 0.76</td>
<td>± 25.3</td>
<td>± 0.254</td>
<td>± 2.94</td>
<td>± 2.03</td>
<td>± 0.63</td>
<td>± 37.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>9</td>
<td>60.3</td>
<td>18.1</td>
<td>6.1</td>
<td>120</td>
<td>4.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>± 1.07</td>
<td>± 1.29</td>
<td>± 0.82</td>
<td>± 20.5</td>
<td>± 0.201</td>
<td>± 1.07</td>
<td>± 0.63</td>
<td>± 37.0</td>
<td>± 0.163</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>10</td>
<td>59.1</td>
<td>18.6</td>
<td>6.3</td>
<td>131</td>
<td>4.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>± 3.40</td>
<td>± 0.81</td>
<td>± 1.19</td>
<td>± 28.3</td>
<td>± 0.198</td>
<td>± 3.40</td>
<td>± 0.81</td>
<td>± 1.19</td>
<td>± 28.3</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>9</td>
<td>60.3</td>
<td>19.9**</td>
<td>6.5</td>
<td>167*</td>
<td>5.63***</td>
<td>5</td>
<td>56.0*</td>
<td>18.0</td>
<td>6.2*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>± 2.49</td>
<td>± 1.62</td>
<td>± 1.37</td>
<td>± 36.4</td>
<td>± 0.214</td>
<td>± 1.07</td>
<td>± 0.94</td>
<td>± 0.43</td>
<td>± 44.4</td>
</tr>
</tbody>
</table>

Values represent mean ± S.D.

*, **, ***: Significantly different from 0 µg/kg group (P<0.05, 0.01, 0.001).
Table 5. Absolute organ weights (g) in rats applied percutaneously with calcipotriol for 4 weeks followed by 4 weeks recovery.

<table>
<thead>
<tr>
<th>Sex</th>
<th>Dose (μg/kg)</th>
<th>n</th>
<th>Body weight(g)</th>
<th>Brain</th>
<th>Thymus</th>
<th>Heart</th>
<th>Liver</th>
<th>Spleen</th>
<th>Salivary gl. (L)</th>
<th>Salivary gl. (R)</th>
<th>Testis (L)</th>
<th>Testis (R)</th>
<th>Prostate</th>
<th>Prostate</th>
<th>Seminal vesicle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>10</td>
<td>337.0</td>
<td>2.137</td>
<td>0.368</td>
<td>1.017</td>
<td>8.622</td>
<td>0.659</td>
<td>0.278</td>
<td>0.278</td>
<td>1.584</td>
<td>1.559</td>
<td>0.339</td>
<td>1.420</td>
<td></td>
</tr>
<tr>
<td></td>
<td>± 19.16</td>
<td>± 0.086</td>
<td>± 0.041</td>
<td>± 0.113</td>
<td>± 0.731</td>
<td>± 0.066</td>
<td></td>
<td></td>
<td>± 0.025</td>
<td>± 0.033</td>
<td>± 0.122</td>
<td>± 0.110</td>
<td>± 0.055</td>
<td>± 0.141</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10</td>
<td>336.7</td>
<td>2.092</td>
<td>0.364</td>
<td>1.041</td>
<td>8.888</td>
<td>0.651</td>
<td>0.285</td>
<td>0.280</td>
<td>1.558</td>
<td>1.541</td>
<td>0.323</td>
<td>1.342</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>± 21.49</td>
<td>± 0.045</td>
<td>± 0.097</td>
<td>± 0.075</td>
<td>± 0.686</td>
<td>± 0.057</td>
<td></td>
<td></td>
<td>± 0.023</td>
<td>± 0.024</td>
<td>± 0.097</td>
<td>± 0.079</td>
<td>± 0.055</td>
<td>± 0.136</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>10</td>
<td>323.5</td>
<td>2.129</td>
<td>0.318</td>
<td>0.993</td>
<td>8.408</td>
<td>0.598</td>
<td>0.274</td>
<td>0.270</td>
<td>1.637</td>
<td>1.608</td>
<td>0.308</td>
<td>1.261</td>
<td></td>
</tr>
<tr>
<td></td>
<td>± 19.24</td>
<td>± 0.062</td>
<td>± 0.060</td>
<td>± 0.049</td>
<td>± 0.819</td>
<td>± 0.062</td>
<td></td>
<td></td>
<td>± 0.014</td>
<td>± 0.020</td>
<td>± 0.072</td>
<td>± 0.074</td>
<td>± 0.043</td>
<td>± 0.136</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>9</td>
<td>276.9***</td>
<td>2.020*</td>
<td>0.254**</td>
<td>0.899*</td>
<td>7.280*</td>
<td>0.538**</td>
<td>0.242*</td>
<td>0.240*</td>
<td>1.508</td>
<td>1.485</td>
<td>0.265</td>
<td>0.966***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>± 16.09</td>
<td>± 0.099</td>
<td>± 0.040</td>
<td>± 0.047</td>
<td>± 0.677</td>
<td>± 0.056</td>
<td></td>
<td></td>
<td>± 0.032</td>
<td>± 0.024</td>
<td>± 0.123</td>
<td>± 0.128</td>
<td>± 0.039</td>
<td>± 0.249</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>10</td>
<td>213.7</td>
<td>1.991</td>
<td>0.317</td>
<td>0.705</td>
<td>5.487</td>
<td>0.425</td>
<td>0.194</td>
<td>0.198</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>± 9.69</td>
<td>± 0.079</td>
<td>± 0.054</td>
<td>± 0.036</td>
<td>± 0.475</td>
<td>± 0.050</td>
<td></td>
<td></td>
<td>± 0.011</td>
<td>± 0.016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>9</td>
<td>217.5</td>
<td>1.990</td>
<td>0.313</td>
<td>0.718</td>
<td>5.684</td>
<td>0.448</td>
<td>0.205</td>
<td>0.202</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>± 16.91</td>
<td>± 0.061</td>
<td>± 0.063</td>
<td>± 0.064</td>
<td>± 0.567</td>
<td>± 0.067</td>
<td></td>
<td></td>
<td>± 0.015</td>
<td>± 0.019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>10</td>
<td>215.7</td>
<td>1.987</td>
<td>0.318</td>
<td>0.736</td>
<td>5.558</td>
<td>0.433</td>
<td>0.188</td>
<td>0.190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>± 17.55</td>
<td>± 0.059</td>
<td>± 0.051</td>
<td>± 0.059</td>
<td>± 0.521</td>
<td>± 0.043</td>
<td></td>
<td></td>
<td>± 0.023</td>
<td>± 0.020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>9</td>
<td>193.4*</td>
<td>1.967</td>
<td>0.277</td>
<td>0.642</td>
<td>5.256</td>
<td>0.386</td>
<td>0.180</td>
<td>0.181</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>± 12.42</td>
<td>± 0.072</td>
<td>± 0.057</td>
<td>± 0.051</td>
<td>± 0.371</td>
<td>± 0.034</td>
<td></td>
<td></td>
<td>± 0.022</td>
<td>± 0.020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values represent mean ± S.D.

*, **, ***: Significantly different from 0 μg/kg group (P < 0.05, 0.01, 0.001).
Table 5. (Continued)

<table>
<thead>
<tr>
<th></th>
<th>Recovery</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sex</td>
<td>Dose</td>
<td>n</td>
<td>Body</td>
<td>Brain</td>
<td>Thymus</td>
<td>Heart</td>
<td>Liver</td>
<td>Spleen</td>
<td>Salivary gl.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(µg/kg)</td>
<td></td>
<td>weight(g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(L)</td>
<td>(R)</td>
</tr>
<tr>
<td>Male</td>
<td>0</td>
<td>5</td>
<td>458.1</td>
<td>2.183</td>
<td>0.357</td>
<td>1.304</td>
<td>12.628</td>
<td>0.814</td>
<td>0.352</td>
<td>0.350</td>
<td>1.744</td>
</tr>
<tr>
<td></td>
<td>± 15.62</td>
<td>± 0.037</td>
<td>± 0.012</td>
<td>± 0.053</td>
<td>± 1.064</td>
<td>± 0.050</td>
<td></td>
<td>± 0.049</td>
<td>± 0.049</td>
<td></td>
<td>± 0.041</td>
</tr>
<tr>
<td>Female</td>
<td>100</td>
<td>5</td>
<td>436.0</td>
<td>2.119</td>
<td>0.391</td>
<td>1.266</td>
<td>12.077</td>
<td>0.796</td>
<td>0.299</td>
<td>0.307</td>
<td>1.552**</td>
</tr>
<tr>
<td></td>
<td>± 31.55</td>
<td>± 0.077</td>
<td>± 0.094</td>
<td>± 0.079</td>
<td>± 1.454</td>
<td>± 0.067</td>
<td></td>
<td>± 0.038</td>
<td>± 0.041</td>
<td></td>
<td>± 0.105</td>
</tr>
</tbody>
</table>

Values represent mean ± S.D.

**: Significantly different from 0 µg/kg group (P < 0.01).
Table 6. Relative organ weights (mg%) in rats applied percutaneously with calcipotriol for 4 weeks followed by 4 weeks recovery.

<table>
<thead>
<tr>
<th>Sex</th>
<th>Dose (μg/kg)</th>
<th>n</th>
<th>Brain (L)</th>
<th>Brain (R)</th>
<th>Lung (L)</th>
<th>Lung (R)</th>
<th>Kidney (L)</th>
<th>Kidney (R)</th>
<th>Adrenal (L)</th>
<th>Adrenal (R)</th>
<th>Testis (L)</th>
<th>Testis (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>0</td>
<td>10</td>
<td>635.0</td>
<td>351.0</td>
<td>350.5</td>
<td>341.3</td>
<td>9.3</td>
<td>9.0</td>
<td>471.1</td>
<td>463.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±29.8</td>
<td>±30.5</td>
<td>±30.3</td>
<td>±25.5</td>
<td>±1.1</td>
<td>±1.3</td>
<td>±41.6</td>
<td>±36.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10</td>
<td>623.5</td>
<td>352.9</td>
<td>349.9</td>
<td>339.1</td>
<td>9.5</td>
<td>8.8</td>
<td>464.1</td>
<td>459.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±42.9</td>
<td>±11.5</td>
<td>±29.5</td>
<td>±17.0</td>
<td>±1.7</td>
<td>±1.5</td>
<td>±36.5</td>
<td>±33.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>20</td>
<td>10</td>
<td>659.9</td>
<td>340.6</td>
<td>372.2</td>
<td>354.6</td>
<td>10.3</td>
<td>9.6</td>
<td>507.4</td>
<td>498.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±37.4</td>
<td>±15.8</td>
<td>±37.5</td>
<td>±30.5</td>
<td>±1.7</td>
<td>±0.9</td>
<td>±35.5</td>
<td>±24.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>100</td>
<td>9</td>
<td>730.9***</td>
<td>391.1*</td>
<td>413.7**</td>
<td>388.4*</td>
<td>12.1**</td>
<td>11.7**</td>
<td>544.7**</td>
<td>536.3***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±46.1</td>
<td>±13.3</td>
<td>±48.3</td>
<td>±43.1</td>
<td>±1.3</td>
<td>±1.9</td>
<td>±35.3</td>
<td>±36.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0</td>
<td>10</td>
<td>933.7</td>
<td>429.7</td>
<td>347.7</td>
<td>336.3</td>
<td>15.7</td>
<td>14.7</td>
<td>5</td>
<td>790.6</td>
<td>391.6</td>
<td>293.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±61.9</td>
<td>±31.3</td>
<td>±16.2</td>
<td>±21.0</td>
<td>±2.3</td>
<td>±2.9</td>
<td>±38.6</td>
<td>±14.7</td>
<td>±32.8</td>
<td>±21.8</td>
</tr>
<tr>
<td>Female</td>
<td>4</td>
<td>9</td>
<td>919.4</td>
<td>422.3</td>
<td>346.6</td>
<td>338.2</td>
<td>16.9</td>
<td>16.5</td>
<td>20</td>
<td>781.4</td>
<td>400.8</td>
<td>314.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±70.1</td>
<td>±24.7</td>
<td>±22.6</td>
<td>±18.4</td>
<td>±1.2</td>
<td>±1.2</td>
<td>±44.3</td>
<td>±12.8</td>
<td>±21.7</td>
<td>±20.1</td>
</tr>
<tr>
<td>Female</td>
<td>20</td>
<td>10</td>
<td>928.0</td>
<td>415.4</td>
<td>342.9</td>
<td>327.9</td>
<td>16.8</td>
<td>15.4</td>
<td>5</td>
<td>1019.6</td>
<td>449.0</td>
<td>410.8***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±96.6</td>
<td>±33.4</td>
<td>±21.0</td>
<td>±18.0</td>
<td>±2.0</td>
<td>±1.9</td>
<td>±56.4</td>
<td>±21.6</td>
<td>±37.8</td>
<td>±28.8</td>
</tr>
</tbody>
</table>

Values represent mean ± S.D.

*, **, ***: Significantly different from 0 μg/kg group (P<0.05, 0.01, 0.001).
A 4-week percutaneous toxicity study of calcipotriol in rats.

Photo 1. Application site from a male applied with calcipotriol for 4 weeks, 100 μg/kg, p.c.: Hyperkeratosis and squamous cell hyperplasia of epidermis, hypertrophy of sebaceous gland, cellular infiltration in epidermis and dermis. H.E. staining, ×122.

Photo 2. Kidney from a male applied with calcipotriol for 4 weeks, 100 μg/kg, p.c.: Mineralization in medulla. H.E. staining, ×244.
<table>
<thead>
<tr>
<th>Organ</th>
<th>Finding</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Application</td>
<td>Recovery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sacrificed</td>
<td>Dead</td>
</tr>
<tr>
<td>Heart</td>
<td>Cytological alteration</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Epicardial fibrosis</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Mineralization of arterial wall</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cellular infiltration</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Microgranuloma</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aorta</td>
<td>Mineralization of arterial wall</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Spleen</td>
<td>Deposit of pigment</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Lymphoid depletion</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Increased extramedullary</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>hematopoiesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mandibular lymph node</td>
<td>Karyorrhexis</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Thymus</td>
<td>Hemorrhage</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cyst</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Karyorrhexis</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lung</td>
<td>Congestion</td>
<td>(+)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(++)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hemorrhage</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Accumulation of foamy cells</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Deposit of crystal</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Deposit of pigment</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cellular infiltration</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Osseous metaplasia</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

(+) / no grade: Slight, (++): Moderate.
<table>
<thead>
<tr>
<th>Organ</th>
<th>Finding</th>
<th>Male Application</th>
<th>Male Recovery</th>
<th>Female Application</th>
<th>Female Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dose (μg/kg) No. of rats</td>
<td>Sacrificed 0 10</td>
<td>Dead 10</td>
<td>Sacrificed 0 10</td>
<td>Dead 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 10 20 100 9 1 5</td>
<td>5 5</td>
<td>4 10 20 100 9 1 5</td>
<td>5 5</td>
</tr>
<tr>
<td>Tongue</td>
<td>Mineralization of arterial wall</td>
<td>0 0 0 0 0 0 1</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Stomach</td>
<td>Mineralization</td>
<td>0 0 0 1 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>Mineralization of muscle layer</td>
<td>0 0 0 0 0 0 1</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Liver</td>
<td>Congestion</td>
<td>0 0 0 0 1 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>Hemorrhage</td>
<td>1 0 0 1 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>Deposit of pigment</td>
<td>1 0 0 2 0 0 1</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>Fibrosis</td>
<td>0 0 0 0 0 0 1</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>Focal fatty change</td>
<td>1 1 1 1 0 0 1</td>
<td>1 0 1 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>Mineralization</td>
<td>0 0 0 1 0 0 1</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>Necrosis</td>
<td>1 0 0 2 0 0 1</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>Periportal fatty change</td>
<td>1 0 0 0 0 1 0</td>
<td>4 2 6 2 1 0 1</td>
<td>1 0 1 1</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>Cellular infiltration</td>
<td>0 0 0 1 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>Foreign body giant cell</td>
<td>0 0 0 1 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>Microgranuloma</td>
<td>2 0 1 2 1 1 3</td>
<td>2 1 1 2 0 1 1</td>
<td>1 1 1</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>Malformative nodule</td>
<td>0 1 2 0 0 0 1</td>
<td>0 0 1 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Kidney</td>
<td>Congestion</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>Hemorrhage</td>
<td>0 0 0 0 0 0 1</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>Basophilic change</td>
<td>(+) 5 3 3 4 1 5 2</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(++) 0 0 0 2 0 0 3</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>Cyst</td>
<td>(+) 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(+++) 0 0 0 0 0 0 3</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

(+) no grade: Slight, (++): Moderate.
<table>
<thead>
<tr>
<th>Organ</th>
<th>Finding</th>
<th>Male Application</th>
<th>Female Application</th>
<th>Male Recovery</th>
<th>Female Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dose (μg/kg)</td>
<td>Sacrificed 10</td>
<td>Sacrificed 100</td>
<td>Dead 10</td>
<td>Dead 100</td>
</tr>
<tr>
<td>Kidney</td>
<td>Eosinophilic body</td>
<td>7 9 6 2 0 5 4 0</td>
<td>0 0 0 0 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fibrosis</td>
<td>0 1 0 0 0 1 0 0</td>
<td>0 0 0 0 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mineralization (+)</td>
<td>1 3 5 8*** 1 2 5 7 5 3 6 0 1 4 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mineralization (++)</td>
<td>0 0 0 0 1 0 0 0 0 0 2 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protein cast</td>
<td>0 0 0 0 0 0 2 0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scarring</td>
<td>0 0 0 0 0 1 0 0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tubular dilatation</td>
<td>0 0 0 2 0 0 0 0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tubular necrosis</td>
<td>0 0 0 0 1 0 0 0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lymphocytic infiltration</td>
<td>0 0 0 0 0 0 2 0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stromal cell proliferation</td>
<td>0 0 0 0 0 0 1 0 1 1 1 1 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminal vesicle</td>
<td>Immature</td>
<td>0 0 0 1 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adrenal</td>
<td>Vacuolic change</td>
<td>2 3 1 2 0 3 4 0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cortical hyperplasia</td>
<td>0 0 0 0 0 0 0 0 0 0 0 1 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye (Cornea)</td>
<td>Mineralization</td>
<td>0 0 2 1 0 0 3 0 0 0 1 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle</td>
<td>Mineralization of arterial wall</td>
<td>0 0 0 0 0 0 1 0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application site (Skin)</td>
<td>Cellular infiltration</td>
<td>0 1 7** 9*** 1 0 0 2 0 6 9*** 0 1 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hyperkeratosis</td>
<td>0 0 0 4* 1 0 0 0 0 0 0 6** 1 1 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hypertrophy of sebaceous gland</td>
<td>4 3 6 9** 1 0 0 4 2 8 9** 1 1 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Squamous cell hyperplasia</td>
<td>7 5 7 9 1 0 0 5 3 7 9* 1 1 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*, **, ***: Significantly different from 0 μg/kg group (P < 0.05, 0.01, 0.001).
考察

MC903のラットにおける反復毒性を検討するため、授与量を0, 4, 20および100 μg/kg/dayに設定し、閉塞性の各群において4週間の経皮毒性試験を実施した。さらに、100 μg/kg/day群について、4週間の回復試験を実施した。

授与期間中、4 kg/kg群の雄9例、100 μg/kg群の雌7例が死亡した。4 μg/kg群の雌1例は間代性症候を発症して死亡したが、死亡時の行動と、順調な体重推移、特に肝、腎の検査および剖検における肺の赤色化から推察して、死因は黒死病の強度の発熱による呼吸困難と判断した。一方、100 μg/kg群の雄8例は、剖検を伴って10日から17日にかけて死亡した。

剖検で胸腺萎縮、心臓内血腫および肺胞の組織学的検査において、特に肝、腎の組織学的異常および肺胞内血腫が認められた。死因は、雄雄ともMC903授与によるストレスおよび循環障害と推察された。生存例に、一般健康の主な変化として、各群の雌雄に眼瞼閉鎖赤色脱色、授与部位の発赤・落屑および膿疱、さらに100 μg/kg群では爪先立ち歩行、被毛失沢、腫脹、眼球表面の一部白濁が認められた。眼球表面の一部白濁は回復しなかったが、その他の変化は、授与期間または回復期間中に消失し、可逆性の変化であった。

授与部位に発赤は対照群の雄数例、雌数例に認められたが、溶媒または保形剤投与による影響が示唆された。また、授与部位に発赤の二次的変化、腫脹は溶媒に含まれるエタノールの刺激に対する反応と考えられた。さらに、眼瞼周囲赤色脱色は授与1日から8日まで、各群の雌雄多数例にみられたが、それ以降には殆ど認められず、保形剤および単純投与によるストレス（Harkness and Ridgway, 1980）と考えられた。

授与期間中、100 μg/kg群の雌雄に体重増加抑制、雄に摂餌量の減少傾向、雌雄に摂水量の増加傾向が認められ、MC903授与の影響が考えられた。

安定帯および首枷を取り除いた授与期間を終了時から回復期間1週にかけて増加したことから、安定帯および首枷装着の影響も考えられた。

ビタミンD₃（関谷ら, 1983）およびその類縁の薬剤であるMC903（Binderup and Bramm, 1988）、1α, 24(R)-OH₂D₃（金谷ら, 1989）の過剰授与ラットに高カルシウム血症が認められている。本試験においても、MC903のカルシウム代謝に及ぼす薬理作用を反映したと思われる変化が、授与期間終了時の眼科学的検査、尿検査、血液学的検査および病理学的検査に認められた。すなわち、100 μg/kg群では雄雄に角膜表面の一部混濁の発生頻度の増加、尿カルシウム排泄量の増加、尿pHの低下、血中カルシウム濃度の増加、角膜の鉱化、雄に尿量の減少、腎臓・心臓動脈壁・腹臓粘膜の鉱化が認められた。また、20 μg/kg群では雄雄のほぼ半数例に角膜表面の一部混濁、尿カルシウム排泄量の増加、雌に角膜の鉱化、雄に尿pHの低下が認められた。

なお、20および100 μg/kg群の尿検査、血液化学的検査および器官重量に認められた変化は、休薬により消失し、可逆性の変化であった。一方、4 μg/kg群では、雄雄ともMC903授与に関連すると思われる変化は認められなかった。

角膜表面の一部混濁（corneal opacity）は、組織学的に角膜上皮下の好塩基性物質の沈着による混濁で、ラット（Crj: CD (SD)）では35.1% (Bellhorn et al., 1988)、自己免疫疾患マウス（MRL/n）では55.8% (Hoffman et al., 1983)と高率に自然発生することが知られている。今回の試験では、混濁の程度は各用量群の雌雄ともほぼ同等で、用量依存的な変化は認められなかった。この変化の原因の一つとして高カルシウム血症が考えられており (Hoffman et al., 1983; Losco and Troup, 1988)、100 μg/kg群の雌雄における混濁発生頻度の有意な増加は、同群の雌雄に認められた高カルシウム血症に関連する変化と考えられた。

授与部位において、20および100 μg/kg群の雌雄に皮疹あるいは真皮の細胞浸潤、100 μg/kg群の雌雄に角化亢進、皮脂腺の肥大、雌に扁平上皮細胞の増生が認められたが、角化亢進を除く変化は対照
群にも認められ、溶媒または保存帯着養による増強が示唆された。なお、これらの変化はいずれも休薬により消失し、可逆性の変化であった。

投与期間終了時の100 μg/kg群において、雄に尿中カリウム、無機リンおよびクレアチニン排泄量の減少が認められたが、尿量の減少を反映した変化であった。また、雌に分葉核好中球比率の増加に伴う総好中球比率およびβ-グロブリン比率の増加が認められ、投与部皮膚の炎症性変化に対応する生体防御反応の活性化を反映する変化と考えられた。さらに、雌にリンパ球比率の減少およびCPK活性の増加がみられたが、関連する組織学変化は認められず、原因は明らかでなかった。また、雌雄に腎臓、肺、肝臓、脾臓、胸腺、肝臓、唾液腺、前立腺、精巢総重量、脳、肺、精巢総重量の増加が認められたが、いずれも体重増加抑制と起因する変化と考えられた。

回復期間終了時の100 μg/kg群において、雌にアルブミン比率の減少、γ-グロブリン比率の増加、肺、肝臓、腎臓、脾臓、胸腺、肝臓、唾液腺、前立腺、精巢総重量の減少、脳、肺の精巣総重量の増加が認められたが、いずれも体重増加抑制に起因する変化と考えられた。

本実験で認められた変化は、MC903の類似薬である1α,24(R)-(OH)2D₃（Kawashima et al., 1977）の13週間経皮反復投与ラットに報告されている所見（金谷ら, 1989）とほぼ類似しており、ビタミンD₂類類似の薬剤に共通して認められている高カルシウム血症によって誘発された変化と考えられた。

以上の結果から、本試験条件下におけるMC903の無毒性量は、雌雄ともに4 μg/kg/dayと推定される。

要約

MC903の安全性を検討するため、0, 4, 20および100 μg/kg/dayをSic: SD系ラットの背部剝皮膚に4週間間隔塗布した。さらに、100 μg/kg/day群について、4週間の回復試験を実施し、以下の結果を得た。

Vol. 21 Suppl. Ⅱ

1. 投与期間中、100 μg/kg群の雌雄各1例が死亡した。死因は、MC903投与によるストレスおよび循環障害と推察した。また、4 μg/kg群の雌1例が、首筋の強度な頸部圧迫による呼吸困難が原因と考えられる間代性喘鳴を発現して死亡した。生存群では雌雄にほぼ常通して、対照群を含む各群に眼瞼周囲赤色変、投与部皮膚の発赤・落屑および鳴聴、100 μg/kg群では爪先立ち歩行、被毛失沢、脱毛、眼球表面の一部白濁を認めた。

2. 投与期間中、100 μg/kg群の雌雄に体重増加抑制、摂水量の増加傾向、雄に摂取量の減少傾向を認めた。

3. 投与期間終了時に、眼科的検査で、100 μg/kg群の雌雄に角膜表面の一部混濁の発生頻度が増加した。尿検査で、20 μg/kg群以上の雌雄に尿中カルシウム排泄量の増加、20 μg/kg群の雌と100 μg/kg群の雌雄に尿pHの低下、100 μg/kg群の雄に尿量の減少を認めた。血液学的検査で、100 μg/kg群の雌雄に分葉核好中球比率の増加に伴う総好中球比率の増加を認めた。血液化学的検査で、100 μg/kg群の雌雄に血中カルシウム濃度の増加、雌にβ-グロブリン比率の増加を認めた。病理組織学的検査で、20 μg/kg群の雄に角膜の乾燥化、20および100 μg/kg群の雌雄に投与部皮膚の真皮に細胞浸潤、100 μg/kg群の雌雄に投与部皮膚の角化亢進、皮脂腺肥大、雌に扁平上皮細胞増生、雌雄に角膜・雄に腎臓の乾燥化を認めた。

4. 4週間の休薬により、眼球の一部白濁、角膜表面の一部混濁、角膜・腎臓の乾燥化の回復は認められなかった。その他は回復し、可逆性の変化であった。

5. 以上の結果から、本試験条件下におけるMC903の無毒性量は、雌雄ともに4 μg/kg/dayと推定した。

（試験期間：1992年11月5日～1993年7月16日）

文献

の毒性に関する研究（第2報）一ラットにおける5週間亜急性毒性試験一．薬理と治療，11，4189–4220。
金谷浩，伊沢義弘，宇野洋，他（1989）：TV-02の毒性研究（第3報）ラットにおける13週間経皮投与による亜急性毒性試験．薬理と治療，17，5301–5367。