INTRAVENOUS CHRONIC TOXICITY OF LENTINAN IN RATS: 6-MONTH TREATMENT AND 3-MONTH RECOVERY

Hajime SHIMAZU, Kyoichi TAKEDA, Chiaki ONODERA, Ichiro MAKITA, Takashi HASHI, Takeshi YAMAZOE, Yukifumi KOKUBA, Hiroyuki TANIGAWA, Shinichi OHKUMA, Kotaro SHINPO* and Masaya TAKEUCHI*
Research Laboratories, Morishita Pharmaceutical Co., Ltd., 1658 Oshinohara Yasu-Cho, Shiga, 520-23 Japan; *Safety Research Institute for Chemical Compounds, Kita-30, Nishi-11, Sapporo 001, Japan.

Abstract—Chronic toxicity of lentinan was studied in male and female JCL: SD rats. Lentinan was given intravenously into tail vein. Dosage levels employed were 0 (5% mannitol), 0.01, 0.1, 1 (with or without dextran), and 10 mg/kg/day for 6 months in a volume of 1 ml/100 g body weight. After 6 months, the treatment was discontinued and a recovery study was performed for 3 months.

Rats receiving 10 mg/kg had redness and necrosis of the tail, the treatment was stopped at week 5, and the rats were sacrificed. Rats receiving 1 mg/kg showed redness of the ear, tail, and serotum, which was remarkable in the 2nd and 3rd months. Body weight gains were not adversely affected.

Laboratory examinations revealed an increase in leukocyte count, decreases in differential eosinophile count and platelet count, and an increase in serum β-globin level in drug-treated rats.

At autopsy after 6 months, rats from the drug-treated groups had pulmonary hemorrhage and enlargements of the spleen and mesenteric lymph nodes. Histologic changes attributable to treatment included (1) activation of reticulo-endothelial system such as small epithelioid cell nodule in the liver.
Hajime SHIMAZU et al.

spleen, and mesenteric lymph nodes, and mobilization of Kupffer cells; (2) arteritis in various organs, especially notable in the spleen, testis, and epididymis; (3) hemorrhage in the lung; and (4) hyospermatogenesis.

All these changes described above had a propensity to recover. The maximum no effect level was estimated to be less than 0.01 mg/kg in the present study in male and female rats.

Key words: Lentinan, chronic toxicity, rat.

緒言

Lentinan は抗腫瘍性を有する高分子グルカンである。今回、われわれは本薬物の前臨床安全性試験の一環として、ラットに 6 ヵ月間静脈内投与する慢性毒性試験を実施し併せて休薬による諸病変の回復の有無をも検討したので報告する。

実験材料および方法

1. 被検物質

Lentinan は、β(1→3) 結合を主鎖とする高分子グルカンであって、白色、無味、無臭の水に難溶で、アルカリには可溶の粉末である。

本試験には試験用に作製した製剤（注射液および凍結乾燥品）を使用した。その組成を Table 1 に示す。

2. 投与期間および動物数

各群とも 1 群雌雄各 28 匹の動物数で試験を開始し、3 ヵ月目に 8 匹、6 ヵ月目に 10 匹を屠殺し、残りは 6 ヵ月間投与後 3 ヵ月間の休薬を行なったのち屠殺した。

3. 投与量および投与方法

投与量はラットの 1 ヵ月投与試験（石井ら、1977）を参考とし、10 mg/kg, 1.0 mg/kg, 0.1 mg/kg, 0.01 mg/kg の 4 群と、デキストランを含む lentinan 1.0 mg/kg 群（以下 +Dex 群）

<table>
<thead>
<tr>
<th>Table 1. Injection Formulations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>5% mannitol Inj.</td>
</tr>
<tr>
<td>0.001% Lentinan Inj.</td>
</tr>
<tr>
<td>0.001% Lentinan Inj. with dextran</td>
</tr>
<tr>
<td>0.01% Lentinan Inj.</td>
</tr>
<tr>
<td>0.01% Lentinan Inj.*</td>
</tr>
<tr>
<td>0.1% Lentinan Inj.*</td>
</tr>
</tbody>
</table>

* Prepared from the freeze-dried material in vial by adding 10ml of water at use. Other formulations each contained 20ml of injection solution with or without lentinan. Animals received either of the above formulations at 1ml/100g body weight. Lentinan dissolved in mannitol and dextran is abbreviated as +Dex. in the following tables and figures.
Chronic toxicity of lentinan

と対照群を設定し、実験を開始した。しかしながら 10 mg/kg 群では後に述べるように、注射部位である尾に変化が認められ、連日投与が困難となって来たため、雄では4週目、雌では3週目に試験を中止した。従って、今回の6ヶ月間の試験は1.0 mg/kgが最高投与量となった。

投与液量は体重100 g当り1mlとし、ラット尾静脈に毎日1回投与した。投与速度は2ml/分とした。なお、対照群には溶媒である5% マンニトール溶液を同様に投与した。

4. 使用動物および環境条件

日本クレアより購入した生後4週令のJCL: SD系雌雄ラットを2週間前予備飼育後、体重が雄124〜178g、雌110〜147gの健常で発育順調なものを実験に使用した。

動物試験は室温23±1℃、湿度60±5%、換気回数15回/hrのSPF施設で行った。

動物はステンレス製ケージに2匹づつ収容し、固形飼料（CE-2, 日本クレア）および水を自由に摂取させた。

5. 検査項目および試験方法

a）一般症状および体重、摂餌量、飲水量の測定:

一般症状は毎日観察し、体重は7週目まで週2回、以後週1回、摂餌量は週2回、飲水量は週1回電子天秤にて測定した。体重は個体別に、摂餌量および飲水量はケージ毎に測定し、1日1匹当たりの摂餌・飲水量を算定した。

b）尿検査:

3ヶ月と6ヶ月の投与終了時および回復試験終了時に、新鮮尿について尿沈渣（Giemsa染色）、マルチテストス試験紙（Ames・三共）、pH、蛋白、糖、ケトン体、ビリルピン、潜血およびウロビリノゲンを検査した。さらにラット1匹ずつを代謝ケージに移し、24時間尿について、尿量、比重（蛋白計、アタゴ）、尿中的Na・K（炎光法）、Cl（電導滴定法）およびCa（OCPC法）を測定した。

c）血液学的検査:

剖検時に各ラットを約18時間絶食後、経頭静脈からEDTA加試験管に採血し、赤血球数、白血球数および血小板数（Toa Microcell-Counter）の測定、血色素量（Cyan-methemoglobin法）、ヘマトクリット値（毛細管法）、白血球百分率（血液塗抹標本、Wright-Giemsa染色）および網赤血球数（Brecher法、Wright-Giemsa染色）の検査を行ない、また腹部大動脈から得られた血液を遠心分離後、プロトロンピン時間（Quick1段法）を測定した。さらに大腿骨骨髄を採取し骨髄塗抹標本（Wright-Giemsa染色）を作製し骨髄像検査を行なった。

d）血清生化学的検査:

剖検時に各ラットを約18時間絶食後、エーテル麻酔下で腹部大動脈から採血し遠心分離した血清について、以下の検査を実施した。

GOT, GPT (Henry変法)，アルカリ性フォスファターゼ（Bessey-Lowry-Broch法の変法），中性脂肪（酵素法），総コレステロール（酵素法），リン脂質（酵素法），尿素窒素（ジアセチルモノオキシム法），クレアチニン（アルカリ性ビクリン酸法），総蛋白（Biuret法），A/G・蛋白分画（セルロースアセテート膜電気泳動法），糖（酵素法），Na, K（炎光法），Ca（OCPC法）,
Hajime SHIMAZU et al.

Cl (電量滴定法)，総ビリルビン（Michaelsson 法の変法）。

e) 眼底検査：

3 ヵ月と6 ヵ月の投与終了時および回復試験終了時に検査を実施した。

検査に際しては、その 30 分前に散瞳剤（Mydriar®, P，参天）を点眼し、無麻酔下で保存し、
携帯用眼底カメラ（RC-II 型，興和）により両眼について視神経乳頭部を中心とした観察と写真
撮影を行なった。

検査はスライド写真をプロジェクター（メディカルビューー，保健資料販売）にて投影し、
視神経乳頭、網膜血管の変化、網膜の浮腫や出血斑の有無などを検査した。

f) 病理解剖検査：

病理組織切片法は，3 ヵ月と6 ヵ月の投与終了時および回復試験終了時に動物を
全採血により屠殺し、直ちに体外表および各臓器について肉眼的観察を行ない、同時に主要臓
器の重量を測定した。その後直ちに各臓器は10% 中性緩衝ホルマリン液で固定し、常法にした
がってパラフィン切片を作製し、hematoxylin–eosin 色染色を行なった。その他、PAS 染色（カ
ルノア固定），Oil red O 染色，Azan 染色，PTAH 染色も必要に応じ実施し観察した。

重量測定臓器は、脳，下垂体，甲状腺，腺体，胸腺，肺，心，肝，脾，腎，副腎，精巣，
前立腺，卵巣，子宮であり，組織学的検査は上記に加えて，眼球，涙腺，耳下腺，食道，気管，
胃，十二指腸，空腸，回腸，盲腸，結腸，直腸，腸間膜リンパ節，膵，膀胱，精巣上体，精巣尾，
骨髄，大動脈，乳腺，皮膚，尾，陰囊，耳介について行なった。さらに電子顕微鏡標本を各群
雌雄2 個の肝，腎，脾について作製した。すなわち，各臓器を2% グルタルアルデヒドで前
固定し，さらに1% オスミウム酸で固定後アルコールで脱水し Epon 樹脂包埋を行なった。各標
本は Watson のウラニル染色と Reynolds 鉛染色の二重染色を行ない，JEM–100 の電子顕微鏡
で写真を撮影して参考に供した。

g) 統計処理：

各検査値は一元配置による分散分析法で対照群と投与群間の有意差検定を行なった。

実 験 成 績

1. 一般症状

急性毒性（石井ら，1980）と同様の所見を耳介，尾，陰囊に認めた。すなわち，1.0 mg/kg/
群においては雄では投与3 週目，雌では2 週目以後に耳介，尾，陰囊の発赤あるいは尾端部の
壊死が数例に認められ，以後，投与終了時まで持続した。その程度は投与量に関連し，また2〜3
ヵ月目には最著に認められた。3 ヵ月目では対照群を除く群に尾の発赤が認められた。1.0 mg/
群とDex 群では著明な差はなかったが，Dex 群では試験開始時より四肢の発赤と浮腫が
投与期間を通して認められた。

回復試験では雌雄ともこれらの所見は徐々に消失し，3 ヵ月の回復試験終了時には特記すべき
所見はなかった。
2. 途中死亡例

雌の 0.1 mg/kg 群に 1 例（11 日目）と 1.0 mg/kg 群に 2 例（20 日目と 238 日目）の試験途中死亡が認められた。これらの病理学的検査の結果、0.1 mg/kg 群では腎盂腎炎、1.0 mg/kg 群の 2 例は尿路結石による死亡と診断された。尿路結石は SD 系ラットによく知られた自然発生性の所見で、本所見も偶発所見と考えられた。なお、11 日目と 20 日目の 2 例の死亡例については、発見時に感染症の疑いを持ったため同一ケージ内の他の 1 例についても殺処分し剖検したが著変は認められなかった。

一方、雄の +Dex 群の 2 例では、45 日目に後肢膝部の発赤と浮腫、步行困難および体重増加抑制がみられ切迫屠殺が適当と考えられたので途中屠殺した。

3. 体重の推移

雄では Lentinan 投与群がいずれも対照群を上回る体重増加を示し、0.1 mg/kg 群では 21～27 週にかけて有意差（p<0.05）が認められた。

雌では各群とも対照群とほぼ同様に推移した（Fig. 1）。

Fig. 1. Growth curves of rats during treatment with Lentinan and recovery

- 37 -
Hajime SHIMAZU et al.

4. 摂餌量、飲水量の推移
摂餌量は雄の lentinan 投与群で増加の傾向があったが、雌では各群とも著明な差はなく、体重増加曲線と同様な推移を示した（Fig. 2）。

飲水量は雌雄とも対照群とほぼ同様の推移を示し、lentinan 投与による影響はみられなかった。

5. 尿検査所見
マルチスティックスによる検査では、3ヵ月、6ヵ月目に lentinan 投与の影響と考えるべき所見は得られなかったが、回復試験では雌雄に潜血反応陽性の個体が1〜2例認められる群もあった。

尿比重は6ヵ月目の検査で雌の lentinan 投与群に軽度な増加傾向を認めた（Table 2）。

尿量に lentine 投与による影響は認められなかった。

尿中電解質は雄の lentinan 投与群で増加する傾向を示したが、いずれも極く軽度で有意差はなかった。

尿沈渣の検査では雌雄とも3ヵ月と6ヵ月目、および回復試験において、リン酸アノミウム・マグネシウム結晶、細菌、腎上皮細胞などが対照群を含めて散見された。雌の回復試験においては、1.0 mg/kg 群の1例に白血球が認められた。

6. 血液学的検査所見
白血球が lentine 投与群で増加傾向を示し、雌の3ヵ月目で著明であった。白血球百分率ではリンパ球がやや増加する傾向を示したが有意差はなかった。一方、好酸球は減少傾向を示し、単球は雌の6ヵ月目で高投与群に減少を認めた。

Fig. 2. Mean food consumption during treatment with lentinan and recovery

- 38 -
Chronic toxicity of lentinan

Table 2 Urinary findings in rats administered intravenously with lentinan for 6 months

<table>
<thead>
<tr>
<th>Sex</th>
<th>Examination</th>
<th>Dose (mg/kg/day)</th>
<th>No. of rats</th>
<th>Protein ±</th>
<th>+</th>
<th>++</th>
<th>+++</th>
<th>Blood -</th>
<th>+</th>
<th>++</th>
<th>Specific gravity</th>
<th>Volume ml/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>Treatment (6 months)</td>
<td>5% Mannitol</td>
<td>10</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>1.0356 ± 0.0062</td>
<td>24.8 ± 11.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.01</td>
<td>9(10)a</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>1.0361 ± 0.0085</td>
<td>16.6 ± 5.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>1.0428 ± 0.0069</td>
<td>25.7 ± 10.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>10</td>
<td>1.0489*** ± 0.0059</td>
<td>22.9 ± 9.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1+Dex.</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>1.0479*** ± 0.0053</td>
<td>23.9 ± 8.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recovery (3 months)</td>
<td>5% Mannitol</td>
<td>10</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>1</td>
<td>1.0436 ± 0.0094</td>
<td>16.0 ± 9.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.01</td>
<td>10</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>1.0378 ± 0.0062</td>
<td>18.9 ± 9.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1</td>
<td>10</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>1.0398 ± 0.0075</td>
<td>21.9 ± 13.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>1.0489 ± 0.0048</td>
<td>17.8 ± 6.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1+Dex.</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>1.0460 ± 0.0068</td>
<td>15.6 ± 3.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>Treatment (6 months)</td>
<td>5% Mannitol</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>10</td>
<td>1.0317 ± 0.0089</td>
<td>11.3 ± 7.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.01</td>
<td>10</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>1.0340 ± 0.0081</td>
<td>10.7 ± 4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1</td>
<td>10</td>
<td>7</td>
<td>3</td>
<td>9</td>
<td>1</td>
<td>1.0309 ± 0.0092</td>
<td>12.3 ± 5.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>1.0281 ± 0.0010</td>
<td>12.1 ± 4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1+Dex.</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>1.0400 ± 0.0095</td>
<td>13.0 ± 3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>Recovery (3 months)</td>
<td>5% Mannitol</td>
<td>10</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>1</td>
<td>1.0351 ± 0.0091</td>
<td>13.3 ± 6.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.01</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>1.0396 ± 0.0069</td>
<td>11.8 ± 3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1</td>
<td>7(8)a</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>1.0333 ± 0.0113</td>
<td>13.3 ± 9.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>1.0304 ± 0.0104</td>
<td>20.6 ± 7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1+Dex.</td>
<td>8(10)a</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>1.0334 ± 0.0116</td>
<td>35.0* ± 33.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* : Significantly different from 5% Mannitol, p<0.05. ** : Significantly different from 5% Mannitol, p<0.01.

a : for urine volume

No remarkable changes were found in the following parameters: pH, glucose, ketone bodies, bilirubin, urobilinogen, and urinary electrolytes (Na, K, Cl, and Ca)

血小板数はlentinan投与群で軽度に減少する傾向を示した。これらの所見は3ヶ月と6ヶ月目、回復試験終了時のいずれの検査でも雌雄に認められ、用量依存性が明らかであった。回復試験では回復する傾向を認めた（Table 3-4）。

骨髄像検査では、赤血球系細胞がごく軽度に1.0 mg/kg群で増加し、M/E比がわずかに減少する傾向を示した。白血球系細胞では、その総数には著変はなかった。好酸球がごく軽度な低下がみられ雌の6ヶ月目の1.0 mg/kg群では有意差を認めた。一方、巨核球の減少傾向はなくその他の項目でも特記する所見はなかった。

その他の検査項目、すなわち赤血球数、網赤血球数、ヘモグロビン、ヘマトクリット値、プロトロンピン時間にはlentinan投与による影響はなかった。

7. 血清生化学的検査

GOT値は雌のlentinan投与群で上昇する傾向を示し、6ヶ月目の検査では0.1 mg/kg以上の群に認められたが有意差はなかった。個体別にみた場合、3ヶ月と6ヶ月目、回復試験終了時の3回の検査とも個体間のバラツキが大きく、また用量依存性も明瞭なものではなかった。雌については、6ヶ月の試験終了時の検査では各群間に著明な差は認められなかった。しかし、雄と同

- 39 -
Table 3: Hematological findings in male rats at terminations of the intravenous administration of lentinan for 6 months and of the recovery test for 3 months

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>No. of rats</th>
<th>Erythrocytes</th>
<th>Reticulocytes</th>
<th>Leucocytes</th>
<th>Differential</th>
<th>Leucocyte count (%)</th>
<th>Platelet</th>
<th>Hemoglobin</th>
<th>Hematocrit</th>
<th>Prothrombin time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>×10^6 / μL</td>
<td>%</td>
<td>×10^6 / μL</td>
<td>%</td>
<td></td>
<td>g/dl</td>
<td>%</td>
<td>sec</td>
<td></td>
</tr>
<tr>
<td>5% Mannitol</td>
<td>10</td>
<td>960.5 ± 30.0</td>
<td>9.75 ± 26.2</td>
<td>101.0 ± 30.7</td>
<td>72.43 ± 7.14</td>
<td>3.77 ± 1.19</td>
<td>4.20 ± 3.22</td>
<td>0.10 ± 0.21</td>
<td>4.50 ± 2.43</td>
<td>8.05 ± 1.62</td>
</tr>
<tr>
<td>Lentinan 0.01</td>
<td>10</td>
<td>950.8 ± 43.0</td>
<td>11.76 ± 5.25</td>
<td>108.6 ± 31.3</td>
<td>73.74 ± 4.67</td>
<td>4.18 ± 2.12</td>
<td>2.68 ± 1.20</td>
<td>0.25 ± 0.49</td>
<td>4.78 ± 2.54</td>
<td>7.97 ± 2.37</td>
</tr>
<tr>
<td>Lentinan 0.1</td>
<td>10</td>
<td>933.4 ± 46.9</td>
<td>11.30 ± 4.86</td>
<td>104.2 ± 32.6</td>
<td>71.43 ± 8.98</td>
<td>3.80 ± 2.01</td>
<td>1.50 ± 1.43</td>
<td>0.05 ± 0.16</td>
<td>4.75 ± 3.12</td>
<td>6.69 ± 3.74</td>
</tr>
<tr>
<td>Lentinan 1.0</td>
<td>10</td>
<td>892.4 ± 67.0</td>
<td>11.88 ± 1.77</td>
<td>179.8** ± 38.7</td>
<td>76.30 ± 7.32</td>
<td>2.50 ± 2.01</td>
<td>0.70 ± 0.11</td>
<td>0.00 ± 0.04</td>
<td>4.90 ± 2.56</td>
<td>9.03 ± 3.43</td>
</tr>
<tr>
<td>Lentinan 1.0 + Dextran</td>
<td>10</td>
<td>960.0 ± 41.4</td>
<td>12.45 ± 9.29</td>
<td>170.8** ± 32.4</td>
<td>66.23 ± 8.24</td>
<td>3.47 ± 2.01</td>
<td>0.89** ± 0.70</td>
<td>0.00 ± 0.00</td>
<td>5.95 ± 3.23</td>
<td>13.78* ± 5.90</td>
</tr>
</tbody>
</table>

Data represent mean ± SD.
* : Significantly different from 5% Mannitol group, p < 0.05.
** : Significantly different from 5% Mannitol group, p < 0.01.
<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>No. of rats</th>
<th>Erythrocytes x10⁵/µl</th>
<th>Leucocytes x10⁵/µl</th>
<th>Differential count (%)</th>
<th>Platelet x10⁵/µl</th>
<th>Hemoglobin g/dl</th>
<th>Hematocrit %</th>
<th>Prothrombin time sec</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 % Mannitol</td>
<td>10</td>
<td>818.9 ± 48.1</td>
<td>9.52 ± 3.77</td>
<td>64.4 ± 9.8</td>
<td>66.07 ± 9.86</td>
<td>5.45 ± 3.17</td>
<td>5.23 ± 0.75</td>
<td>6.22 ± 2.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lentilin</td>
<td>10</td>
<td>808.9 ± 38.6</td>
<td>12.32 ± 5.31</td>
<td>77.9 ± 19.5</td>
<td>68.10 ± 7.53</td>
<td>3.88 ± 1.53</td>
<td>7.10 ± 2.40</td>
<td>6.20 ± 3.26</td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lentilin</td>
<td>10</td>
<td>826.6 ± 38.1</td>
<td>9.57 ± 5.18</td>
<td>97.1 ± 23.3</td>
<td>70.61 ± 7.62</td>
<td>3.58 ± 1.38</td>
<td>5.95 ± 2.08</td>
<td>5.44 ± 4.24</td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lentilin</td>
<td>10</td>
<td>808.9 ± 38.4</td>
<td>13.16 ± 5.9</td>
<td>98.9 ± 27.6</td>
<td>69.31 ± 8.60</td>
<td>2.43 ± 0.72</td>
<td>6.92 ± 1.37</td>
<td>4.85 ± 2.24</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lentilin</td>
<td>10</td>
<td>812.5 ± 45.0</td>
<td>13.16 ± 5.9</td>
<td>95.3 ± 27.6</td>
<td>71.38 ± 10.01</td>
<td>1.80 ± 0.26</td>
<td>7.07 ± 2.43</td>
<td>5.47 ± 2.54</td>
</tr>
<tr>
<td>+ Dextran</td>
<td></td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 % Mannitol</td>
<td>10</td>
<td>839.4 ± 43.7</td>
<td>15.26 ± 12.2</td>
<td>60.4 ± 12.2</td>
<td>68.15 ± 12.33</td>
<td>2.95 ± 1.40</td>
<td>8.30 ± 3.20</td>
<td>7.25 ± 2.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lentilin</td>
<td>10</td>
<td>812.7 ± 65.6</td>
<td>18.23 ± 14.8</td>
<td>73.01 ± 14.8</td>
<td>71.30 ± 9.52</td>
<td>3.05 ± 1.17</td>
<td>7.25 ± 1.90</td>
<td>7.25 ± 1.17</td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lentilin</td>
<td>8</td>
<td>846.9 ± 65.6</td>
<td>16.53 ± 26.5</td>
<td>83.5 ± 26.5</td>
<td>72.44 ± 6.72</td>
<td>3.31 ± 1.61</td>
<td>7.19 ± 2.75</td>
<td>7.25 ± 1.25</td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lentilin</td>
<td>7</td>
<td>860.1 ± 41.3</td>
<td>19.99 ± 18.0</td>
<td>90.1 ± 18.0</td>
<td>74.86 ± 9.41</td>
<td>3.43 ± 1.21</td>
<td>7.25 ± 1.73</td>
<td>7.25 ± 1.73</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lentilin</td>
<td>10</td>
<td>835.7 ± 34.2</td>
<td>18.18 ± 16.3</td>
<td>76.3 ± 16.3</td>
<td>68.25 ± 8.21</td>
<td>4.35 ± 1.06</td>
<td>7.25 ± 1.73</td>
<td>7.25 ± 1.73</td>
</tr>
<tr>
<td>+ Dextran</td>
<td></td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data represent mean value ± SD.

* : Significantly different from 5 % Mannitol group, p<0.05.
** : Significantly different from 5 % Mannitol group, p<0.01.
Hajime SHIMAZU et al.

様、各個体によるバラツキがかなり大きく認められ、回復試験で特に著明であった。

GPT 値についても同様の変動が認められた。すなわち雄の lentinan 投与群で上昇する傾向を
示し、6 ヶ月目の検査では 0.1 mg/kg 以上の群に認められたが、雌については各群間に著明な差
は認められなかった。個体による GPT 値の変動は GOT 値のそれに類似し GOT、GPT 値が同
時に上昇する個体が多く認められた。

アルカリ性ファスファターゼ値は 6 ヶ月目の検査で軽度な上昇傾向を認めた。

プロリリン分画中、β-プロリピンが lentinan 投与群で増加の傾向を示した。有意差を認めた
ものは、3 ヶ月目の雄 1.0 mg/kg 群と +Dex 群、6 ヶ月目の雄 +Dex 群、回復試験終了時の雄
0.1 mg/kg 群であった。

以上の各項目以外にも若干変動のみられる項目もあったが、用量との関連性やその程度から
毒性学的な意義づけは困難であった（Table 5, 6）。

8. 眼底検査所見

3 ヶ月目の 0.01 mg/kg 群、6 ヶ月目の 0.1 mg/kg 群、回復試験終了時の 0.01 mg/kg 群では 1
例に、眼球の混濁が認められた。

眼底像では視神経乳頭や網膜の浮腫、出血斑などの異常所見は発見されず、動脈の拡張が
対照群を含めた各群に散見される程度であった。その他、動脈拡張の計測では動脈の拡張傾向
が雄の 3 ヶ月目の lentinan 投与群に認められ、静脈の拡張傾向も鈍い差異が見られた。6 ヶ月目の 0.1 mg
/kg、1.0 mg/kg 群に認められたが、回復試験では著変は認められなかった。

9. 臓器重量

脾重量は lentinan 投与群で増加し、用量依存性が明瞭であった。6 ヶ月目では相対重量にお
いて、雄は 1 mg/kg、雌は 0.1 mg/kg 以上の群と、雌雄の +Dex 群に有意差 (p<0.01) を認め
た。その程度は 3 ヶ月目では雌雄の 1 mg/kg 群は対照群の約 2.5 倍に対し、6 ヶ月の試験では
雄が約 2.7 倍、雌が約 2.3 倍であった。回復試験では 0.01 mg/kg と 0.1 mg/kg 群では持続する
傾向がみられたが、1 mg/kg 群では雄で对照群の約 2.0 倍、雌で約 1.7 倍と明らかに回復傾向
がみられた。

肝重量は lentinan 投与群で軽度に増加する傾向を示した。精巣重量は lentinan 投与群で減少
する傾向を示したが、有意差をみるには至らなかった。その他、若干変動を示す臓器もみられたが、
その程度や用量依存性の点から意義のある所見とは考え難い（Table 7, 8）。

10. 剖検所見

肺、脾、精巣、精巣上体、腸間膜リンパ節に lentinan 投与の影響と考えられる所見を得た。

肺では新旧の点状ないし斑状の出血が軽度ないし中程度に認められた。その発生頻度は 3 ヶ
月より 6 ヶ月目に多く、1.0 mg/kg 群では雄 9/10 例、雌 4/10 例、0.01 mg/kg 群では雄 2/10、
雌 1/10 に認められた。しかし、回復試験ではその頻度は、1.0 mg/kg 群で雄 1/10 例、雌 3/7 例
と軽減する傾向を示した。

脾には腫大が認められ、その程度は臓器重量の項目に述べた知くであった。

精巣は萎縮し、軟弱化しているものが lentinan 投与群で認められ、6 ヶ月試験終了時では
Table 5
Biochemical findings in male rats at terminations of the intravenous administration of lentinan for 6 months and of the recovery test for 3 months

<table>
<thead>
<tr>
<th>Dose</th>
<th>No. of rats</th>
<th>GOT (IU/l)</th>
<th>GPT (IU/l)</th>
<th>Alp (mg/dl)</th>
<th>Glc (mg/dl)</th>
<th>TC (mg/dl)</th>
<th>TG (mg/dl)</th>
<th>PL (mg/dl)</th>
<th>BUN (mg/dl)</th>
<th>TB (mg/dl)</th>
<th>CRNN (g/dl)</th>
<th>TP (g/dl)</th>
<th>A/G ratio</th>
<th>Albumin (%)</th>
<th>α1</th>
<th>α2</th>
<th>Globulin (%)</th>
<th>β</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% Mannitol</td>
<td>10</td>
<td>156.5 ± 12.1</td>
<td>33.2 ± 19.6</td>
<td>76.6 ± 23</td>
<td>188.4 ± 15.1</td>
<td>44.5 ± 8.6</td>
<td>135.0 ± 44.1</td>
<td>102.1 ± 14.4</td>
<td>16.1 ± 2.3</td>
<td>0.23 ± 0.07</td>
<td>0.50 ± 0.06</td>
<td>6.00 ± 0.26</td>
<td>1.422 ± 0.171</td>
<td>58.67 ± 3.0</td>
<td>15.94 ± 2.12</td>
<td>58.88 ± 2.94</td>
<td>16.30 ± 2.94</td>
<td>3.85 ± 1.86</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>10</td>
<td>133.5 ± 43.1</td>
<td>33.3 ± 14.1</td>
<td>84.9 ± 20.6</td>
<td>190.5 ± 18.6</td>
<td>42.2 ± 10.5</td>
<td>136.9 ± 40.7</td>
<td>98.6 ± 18.7</td>
<td>16.9 ± 1.8</td>
<td>0.21 ± 0.03</td>
<td>0.56 ± 0.07</td>
<td>5.91 ± 0.14</td>
<td>1.179* ± 1.206</td>
<td>53.88* ± 1.247</td>
<td>18.00 ± 1.115</td>
<td>6.18 ± 1.61</td>
<td>17.85 ± 1.61</td>
<td>4.75 ± 1.22</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>10</td>
<td>226.9 ± 113.4</td>
<td>68.6 ± 62.1</td>
<td>89.2 ± 21.6</td>
<td>191.7 ± 27.0</td>
<td>46.4 ± 13.2</td>
<td>115.3 ± 28.3</td>
<td>106.5 ± 22.8</td>
<td>15.8 ± 3.0</td>
<td>0.26 ± 0.05</td>
<td>0.54 ± 0.08</td>
<td>5.97 ± 0.30</td>
<td>1.247 ± 1.115</td>
<td>55.50 ± 1.247</td>
<td>16.47 ± 1.16</td>
<td>6.08 ± 1.61</td>
<td>18.36 ± 1.61</td>
<td>4.29 ± 1.22</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>10</td>
<td>223.7 ± 77.0</td>
<td>66.6 ± 29.4</td>
<td>90.3 ± 27.1</td>
<td>193.1 ± 29.4</td>
<td>41.1 ± 7.2</td>
<td>118.3 ± 23.4</td>
<td>100.3 ± 16.6</td>
<td>17.6 ± 1.6</td>
<td>0.28 ± 0.04</td>
<td>0.57 ± 0.05</td>
<td>5.74 ± 0.16</td>
<td>1.369 ± 0.204</td>
<td>57.67 ± 0.370</td>
<td>15.47 ± 1.46</td>
<td>5.79 ± 1.65</td>
<td>18.29 ± 1.65</td>
<td>3.47 ± 1.22</td>
<td></td>
</tr>
<tr>
<td>1.0 + Dextran</td>
<td>10</td>
<td>270.0 ± 175.1</td>
<td>82.7 ± 69.4</td>
<td>108.6 ± 43.2</td>
<td>180.9 ± 23.3</td>
<td>46.4 ± 14.1</td>
<td>105.9 ± 25.0</td>
<td>103.3 ± 26.6</td>
<td>17.3 ± 4.5</td>
<td>0.29 ± 0.06</td>
<td>0.52 ± 0.10</td>
<td>5.73 ± 0.16</td>
<td>1.289 ± 0.127</td>
<td>56.35 ± 0.127</td>
<td>15.50 ± 0.94</td>
<td>6.02 ± 0.84</td>
<td>19.23* ± 0.84</td>
<td>3.60 ± 1.20</td>
<td></td>
</tr>
<tr>
<td>Recovery</td>
<td>10</td>
<td>119.8 ± 58.0</td>
<td>51.1 ± 56.2</td>
<td>67.2 ± 16.9</td>
<td>195.6 ± 28.3</td>
<td>39.4 ± 6.5</td>
<td>173.8 ± 56.7</td>
<td>107.6 ± 10.4</td>
<td>13.4 ± 1.4</td>
<td>0.39 ± 0.10</td>
<td>0.54 ± 0.07</td>
<td>5.73 ± 0.19</td>
<td>1.179 ± 0.083</td>
<td>54.28 ± 1.08</td>
<td>20.05 ± 1.10</td>
<td>6.41 ± 1.09</td>
<td>15.82 ± 1.09</td>
<td>4.36 ± 1.29</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>10</td>
<td>182.7 ± 125.0</td>
<td>69.9 ± 64.3</td>
<td>83.2 ± 15.8</td>
<td>186.4 ± 29.2</td>
<td>37.4 ± 8.2</td>
<td>144.4 ± 21.4</td>
<td>99.6 ± 22.2</td>
<td>15.0 ± 1.7</td>
<td>0.31 ± 0.07</td>
<td>0.54 ± 0.05</td>
<td>5.63 ± 0.14</td>
<td>1.171 ± 0.115</td>
<td>53.96 ± 1.59</td>
<td>18.73 ± 1.59</td>
<td>6.34 ± 1.59</td>
<td>17.15 ± 1.59</td>
<td>4.73 ± 1.24</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>10</td>
<td>123.4 ± 59.5</td>
<td>54.5 ± 34.9</td>
<td>103.5* ± 27.0</td>
<td>172.2 ± 14.6</td>
<td>47.5 ± 42.9</td>
<td>158.3 ± 36.5</td>
<td>103.6 ± 18.4</td>
<td>15.7 ± 1.8</td>
<td>0.34 ± 0.07</td>
<td>0.54 ± 0.06</td>
<td>5.99* ± 0.26</td>
<td>1.012* ± 0.206</td>
<td>49.93* ± 0.206</td>
<td>18.55 ± 0.10</td>
<td>7.13 ± 0.61</td>
<td>19.42** ± 0.61</td>
<td>5.90 ± 1.32</td>
<td></td>
</tr>
<tr>
<td>0.1 + Dextran</td>
<td>10</td>
<td>216.9 ± 83.1</td>
<td>92.3 ± 59.4</td>
<td>73.1 ± 29.7</td>
<td>180.4 ± 13.4</td>
<td>40.4 ± 6.5</td>
<td>150.8 ± 24.3</td>
<td>107.7 ± 3.2</td>
<td>16.6** ± 3.2</td>
<td>0.34 ± 0.09</td>
<td>0.57 ± 0.11</td>
<td>5.84 ± 0.14</td>
<td>1.075 ± 0.112</td>
<td>51.89 ± 1.61</td>
<td>19.49 ± 1.61</td>
<td>7.68 ± 1.61</td>
<td>18.21 ± 1.61</td>
<td>3.69 ± 1.29</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>8</td>
<td>186.1 ± 47.3</td>
<td>94.5 ± 52.9</td>
<td>74.0 ± 34.4</td>
<td>183.8 ± 26.4</td>
<td>47.6 ± 11.3</td>
<td>148.8 ± 34.1</td>
<td>128.6 ± 25.7</td>
<td>14.9 ± 0.8</td>
<td>0.38 ± 0.07</td>
<td>0.56 ± 0.05</td>
<td>5.71 ± 0.25</td>
<td>1.164 ± 0.088</td>
<td>53.94 ± 1.90</td>
<td>18.51 ± 1.90</td>
<td>6.54 ± 1.90</td>
<td>18.15 ± 1.90</td>
<td>3.75 ± 1.48</td>
<td></td>
</tr>
</tbody>
</table>

Data represent mean ± SD.
* : Significantly different from 5% Mannitol group, p<0.05.
** : Significantly different from 5% Mannitol group, p<0.01.
<table>
<thead>
<tr>
<th>Dose</th>
<th>No. of rats</th>
<th>GOT (IU/l)</th>
<th>GPT (IU/l)</th>
<th>Alp (mg/dl)</th>
<th>Glc (mg/dl)</th>
<th>TC (mg/dl)</th>
<th>TG (mg/dl)</th>
<th>PL (mg/dl)</th>
<th>BUN (mg/dl)</th>
<th>TP (mg/dl)</th>
<th>A/G</th>
<th>Protein fractionation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mg/kg)</td>
<td></td>
<td>Albumin α1 α2 β γ</td>
</tr>
<tr>
<td>5% Mannitol</td>
<td>10</td>
<td>206.2 ± 142.4</td>
<td>86.3 ± 86.6</td>
<td>31.8 ± 10.2</td>
<td>128.5 ± 8.5</td>
<td>56.2 ± 14.5</td>
<td>88.0 ± 23.4</td>
<td>154.5 ± 31.1</td>
<td>21.0 ± 3.1</td>
<td>0.31 ± 0.08</td>
<td>0.67 ± 0.08</td>
<td>6.61 ± 0.34</td>
</tr>
<tr>
<td>Lentian</td>
<td>0.01</td>
<td>213.5 ± 98.7</td>
<td>78.0 ± 54.7</td>
<td>37.6 ± 10.3</td>
<td>151.3 ± 5.3</td>
<td>58.3 ± 28.5</td>
<td>98.8 ± 16.0</td>
<td>153.8 ± 21.1</td>
<td>20.5 ± 0.4</td>
<td>0.28 ± 0.08</td>
<td>0.73 ± 0.07</td>
<td>6.48 ± 0.47</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>159.6 ± 123.3</td>
<td>47.4 ± 46.5</td>
<td>43.8 ± 19.1</td>
<td>142.3 ± 24.7</td>
<td>47.6 ± 23.1</td>
<td>88.2 ± 36.7</td>
<td>136.8 ± 27.6</td>
<td>19.2 ± 0.8</td>
<td>0.22 ± 0.08</td>
<td>0.67 ± 0.08</td>
<td>6.30 ± 0.56</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>215.5 ± 102.2</td>
<td>63.2 ± 35.9</td>
<td>42.5 ± 10.6</td>
<td>154.9* ± 20.5</td>
<td>50.2 ± 30.1</td>
<td>104.3 ± 27.8</td>
<td>147.9 ± 26.0</td>
<td>19.1 ± 0.4</td>
<td>0.28 ± 0.05</td>
<td>0.66 ± 0.05</td>
<td>6.54 ± 0.46</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>217.5 ± 143.4</td>
<td>72.6 ± 64.7</td>
<td>41.9 ± 11.7</td>
<td>154.3 ± 16.6</td>
<td>59.3 ± 41.1</td>
<td>101.6 ± 37.3</td>
<td>149.7 ± 4.8</td>
<td>21.9 ± 0.13</td>
<td>0.29 ± 0.13</td>
<td>0.63 ± 0.13</td>
<td>6.37 ± 0.21</td>
</tr>
<tr>
<td></td>
<td>+ Dextran</td>
<td></td>
</tr>
<tr>
<td>5% Mannitol</td>
<td>10</td>
<td>94.5 ± 38.7</td>
<td>28.7 ± 15.4</td>
<td>26.1 ± 9.7</td>
<td>143.6 ± 20.1</td>
<td>57.3 ± 11.3</td>
<td>115.2 ± 28.3</td>
<td>162.6 ± 3.1</td>
<td>16.3 ± 0.7</td>
<td>0.16 ± 0.07</td>
<td>0.51 ± 0.07</td>
<td>6.49 ± 0.42</td>
</tr>
<tr>
<td>Lentian</td>
<td>0.01</td>
<td>283.0 ± 193.0</td>
<td>57.7 ± 31.8</td>
<td>30.9 ± 10.5</td>
<td>138.4 ± 9.8</td>
<td>57.5 ± 16.3</td>
<td>124.8 ± 46.5</td>
<td>167.8 ± 3.3</td>
<td>17.4 ± 0.5</td>
<td>0.15 ± 0.07</td>
<td>0.57 ± 0.04</td>
<td>6.39 ± 0.44</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>201.9 ± 127.5</td>
<td>67.8 ± 40.8</td>
<td>44.0* ± 15.3</td>
<td>135.6 ± 14.4</td>
<td>54.6 ± 11.8</td>
<td>151.4 ± 46.5</td>
<td>163.9 ± 3.9</td>
<td>18.0 ± 0.8</td>
<td>0.23 ± 0.05</td>
<td>0.55 ± 0.08</td>
<td>6.54 ± 0.36</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>257.4 ± 229.8</td>
<td>70.3 ± 58.6</td>
<td>29.6 ± 6.7</td>
<td>147.4 ± 15.9</td>
<td>48.9 ± 6.6</td>
<td>93.7 ± 21.3</td>
<td>143.1 ± 3.2</td>
<td>19.7 ± 0.10</td>
<td>0.30* ± 0.06</td>
<td>0.60 ± 0.06</td>
<td>6.43 ± 0.26</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>284.2 ± 284.1</td>
<td>68.8 ± 53.9</td>
<td>38.4 ± 15.9</td>
<td>155.3 ± 20.0</td>
<td>64.4 ± 12.6</td>
<td>172.6 ± 26.6</td>
<td>200.0 ± 3.7</td>
<td>20.2 ± 0.3</td>
<td>0.27* ± 0.07</td>
<td>0.60 ± 0.07</td>
<td>6.61 ± 0.32</td>
</tr>
</tbody>
</table>

Data represent mean value ± SD.
* : Significantly different from 5 % Mannitol group, p<0.05.
** : Significantly different from 5 % Mannitol group, p<0.01.
<table>
<thead>
<tr>
<th>Dose</th>
<th>No. of rats</th>
<th>Brain (%)</th>
<th>Hypophysis (mg/g)</th>
<th>Thyroid (mg/g)</th>
<th>Submandibular Right (%)</th>
<th>Submandibular Left (%)</th>
<th>Thymus (%)</th>
<th>Lung (%)</th>
<th>Heart (%)</th>
<th>Liver (%)</th>
<th>Spleen (%)</th>
<th>Adrenal Right (mg/g)</th>
<th>Adrenal Left (%)</th>
<th>Kidney Right (mg/g)</th>
<th>Kidney Left (%)</th>
<th>Testis Right (%)</th>
<th>Prostate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 % Mannitol</td>
<td>10</td>
<td>0.438 ± 0.030</td>
<td>2.472 ± 0.327</td>
<td>4.852 ± 0.652</td>
<td>0.0658 ± 0.0061</td>
<td>0.0667 ± 0.011</td>
<td>0.029 ± 0.0077</td>
<td>0.311 ± 0.030</td>
<td>2.495 ± 0.136</td>
<td>0.169 ± 0.041</td>
<td>4.63 ± 0.077</td>
<td>5.21 ± 0.071</td>
<td>0.288 ± 0.019</td>
<td>0.285 ± 0.0016</td>
<td>0.368 ± 0.030</td>
<td>0.360 ± 0.0031</td>
<td>0.200 ± 0.050</td>
</tr>
<tr>
<td>Lentinan 0.01</td>
<td>10</td>
<td>0.420 ± 0.044</td>
<td>2.376 ± 0.388</td>
<td>4.739 ± 1.006</td>
<td>0.0643 ± 0.0068</td>
<td>0.0676 ± 0.0075</td>
<td>0.025 ± 0.0052</td>
<td>0.309 ± 0.0072</td>
<td>2.516 ± 0.089</td>
<td>0.243 ± 0.075</td>
<td>4.96 ± 0.57</td>
<td>5.24 ± 0.012</td>
<td>0.281 ± 0.013</td>
<td>0.275 ± 0.0059</td>
<td>0.328 ± 0.045</td>
<td>0.338 ± 0.045</td>
<td>0.226 ± 0.050</td>
</tr>
<tr>
<td>Lentinan 0.1</td>
<td>10</td>
<td>0.389 ± 0.041</td>
<td>2.576 ± 0.493</td>
<td>4.235 ± 0.642</td>
<td>0.0687 ± 0.0085</td>
<td>0.0698 ± 0.0097</td>
<td>0.025 ± 0.0073</td>
<td>0.295 ± 0.022</td>
<td>2.569 ± 0.199</td>
<td>0.263 ± 0.019</td>
<td>4.87 ± 0.93</td>
<td>5.19 ± 0.029</td>
<td>0.280 ± 0.031</td>
<td>0.279 ± 0.012</td>
<td>0.307 ± 0.012</td>
<td>0.321 ± 0.065</td>
<td>0.191 ± 0.062</td>
</tr>
<tr>
<td>Lentinan 1.0</td>
<td>10</td>
<td>0.429 ± 0.041</td>
<td>2.609 ± 0.296</td>
<td>4.634 ± 1.006</td>
<td>0.0719 ± 0.0091</td>
<td>0.0681 ± 0.008</td>
<td>0.024 ± 0.007</td>
<td>0.340 ± 0.020</td>
<td>2.740 ± 0.119</td>
<td>0.452 ± 0.035</td>
<td>5.25 ± 0.52</td>
<td>5.68 ± 0.035</td>
<td>0.280 ± 0.0057</td>
<td>0.280 ± 0.074</td>
<td>0.064 ± 0.012</td>
<td>0.053 ± 0.012</td>
<td>0.219 ± 0.065</td>
</tr>
<tr>
<td>Lentinan 1.0 + Dextran</td>
<td>10</td>
<td>0.431 ± 0.065</td>
<td>2.544 ± 0.357</td>
<td>4.966 ± 0.541</td>
<td>0.0728 ± 0.0096</td>
<td>0.0721 ± 0.0076</td>
<td>0.023 ± 0.0078</td>
<td>0.331 ± 0.0026</td>
<td>2.584 ± 0.088</td>
<td>0.395 ± 0.083</td>
<td>5.11 ± 0.55</td>
<td>5.69 ± 0.046</td>
<td>0.295 ± 0.0031</td>
<td>0.292 ± 0.0052</td>
<td>0.063 ± 0.012</td>
<td>0.196 ± 0.049</td>
<td></td>
</tr>
<tr>
<td>5 % Mannitol</td>
<td>10</td>
<td>0.391 ± 0.035</td>
<td>2.298 ± 0.483</td>
<td>4.278 ± 0.509</td>
<td>0.0627 ± 0.0052</td>
<td>0.0632 ± 0.0082</td>
<td>–</td>
<td>0.277 ± 0.033</td>
<td>2.392 ± 0.027</td>
<td>0.152 ± 0.022</td>
<td>4.30 ± 0.75</td>
<td>4.49 ± 0.026</td>
<td>0.256 ± 0.026</td>
<td>0.249 ± 0.029</td>
<td>0.310 ± 0.046</td>
<td>0.307 ± 0.040</td>
<td>0.133 ± 0.040</td>
</tr>
<tr>
<td>Lentinan 0.01</td>
<td>10</td>
<td>0.375 ± 0.031</td>
<td>2.389 ± 0.361</td>
<td>3.714 ± 0.509</td>
<td>0.0598 ± 0.0056</td>
<td>0.0596 ± 0.008</td>
<td>–</td>
<td>0.263 ± 0.028</td>
<td>2.345 ± 0.012</td>
<td>0.240 ± 0.071</td>
<td>3.72 ± 0.67</td>
<td>4.44 ± 0.021</td>
<td>0.258 ± 0.028</td>
<td>0.292 ± 0.063</td>
<td>0.307 ± 0.028</td>
<td>0.123 ± 0.028</td>
<td></td>
</tr>
<tr>
<td>Lentinan 0.1</td>
<td>10</td>
<td>0.371 ± 0.027</td>
<td>2.331 ± 0.609</td>
<td>4.576 ± 1.329</td>
<td>0.0600 ± 0.0074</td>
<td>0.0563 ± 0.0069</td>
<td>–</td>
<td>0.283 ± 0.023</td>
<td>2.465 ± 0.018</td>
<td>0.264 ± 0.032</td>
<td>4.13 ± 0.95</td>
<td>4.54 ± 0.018</td>
<td>0.263 ± 0.024</td>
<td>0.294 ± 0.024</td>
<td>0.291 ± 0.032</td>
<td>0.128 ± 0.037</td>
<td></td>
</tr>
<tr>
<td>Lentinan 1.0</td>
<td>10</td>
<td>0.387 ± 0.052</td>
<td>2.255 ± 0.443</td>
<td>4.237 ± 1.056</td>
<td>0.0577 ± 0.0131</td>
<td>0.0588 ± 0.0131</td>
<td>–</td>
<td>0.272 ± 0.036</td>
<td>2.498 ± 0.028</td>
<td>0.309 ± 0.055</td>
<td>3.83 ± 1.24</td>
<td>4.40 ± 0.035</td>
<td>0.270 ± 0.026</td>
<td>0.282 ± 0.035</td>
<td>0.280 ± 0.040</td>
<td>0.124 ± 0.042</td>
<td></td>
</tr>
<tr>
<td>Lentinan 1.0 + Dextran</td>
<td>8</td>
<td>0.386 ± 0.014</td>
<td>2.651 ± 0.383</td>
<td>4.021 ± 0.925</td>
<td>0.0629 ± 0.0037</td>
<td>0.0611 ± 0.0082</td>
<td>–</td>
<td>0.295 ± 0.028</td>
<td>2.465 ± 0.026</td>
<td>0.286 ± 0.044</td>
<td>4.03 ± 1.36</td>
<td>4.45 ± 0.023</td>
<td>0.263 ± 0.026</td>
<td>0.290 ± 0.023</td>
<td>0.295 ± 0.071</td>
<td>0.133 ± 0.021</td>
<td></td>
</tr>
</tbody>
</table>

Data represent mean value ± SD.

* : Significantly different from 5 % Mannitol group, p<0.05.
** : Significantly different from 5 % Mannitol group, p<0.01.
Table 8 Relative organ weight in female rats at terminations of the intravenous administration of lentilin for 6 months and of the recovery test for 3 months

<table>
<thead>
<tr>
<th>Dose</th>
<th>No. of Brain (%)</th>
<th>Hypophysis (mg%)</th>
<th>Thyroid (mg%)</th>
<th>Submandibular Right (%)</th>
<th>Submandibular Left (%)</th>
<th>Thymus (%)</th>
<th>Lung (%)</th>
<th>Heart (%)</th>
<th>Liver (%)</th>
<th>Spleen (%)</th>
<th>Adrenal Right (%)</th>
<th>Adrenal Left (%)</th>
<th>Kidney Right (%)</th>
<th>Kidney Left (%)</th>
<th>Ovary Right (%)</th>
<th>Ovary Left (%)</th>
<th>Uterus (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 % Mannitol</td>
<td>10</td>
<td>0.761 ± 0.046</td>
<td>7.186 ± 2.378</td>
<td>6.803 ± 1.846</td>
<td>0.0959 ± 0.0089</td>
<td>0.0938 ± 0.0100</td>
<td>0.041 ± 0.0100</td>
<td>0.443 ± 0.0100</td>
<td>0.316 ± 0.027</td>
<td>2.536 ± 0.300</td>
<td>0.190 ± 0.039</td>
<td>10.80 ± 1.76</td>
<td>12.29 ± 1.48</td>
<td>0.327 ± 0.033</td>
<td>0.321 ± 0.033</td>
<td>±3.77</td>
<td>±3.60</td>
</tr>
<tr>
<td>Lentinan 0.01</td>
<td>10</td>
<td>0.758 ± 0.062</td>
<td>6.896 ± 2.432</td>
<td>6.352 ± 2.369</td>
<td>0.0898 ± 0.0091</td>
<td>0.0877 ± 0.0157</td>
<td>0.039 ± 0.0100</td>
<td>0.436 ± 0.0100</td>
<td>0.305 ± 0.021</td>
<td>2.600 ± 0.0164</td>
<td>0.255 ± 0.044</td>
<td>10.11 ± 1.64</td>
<td>10.83 ± 1.76</td>
<td>0.324 ± 0.028</td>
<td>0.317 ± 0.026</td>
<td>±4.10</td>
<td>±3.01</td>
</tr>
<tr>
<td>Lentinan 0.1</td>
<td>10</td>
<td>0.720 ± 0.088</td>
<td>6.587 ± 1.314</td>
<td>6.563 ± 0.927</td>
<td>0.0893 ± 0.0097</td>
<td>0.0868 ± 0.0135</td>
<td>0.046 ± 0.0190</td>
<td>0.448 ± 0.0190</td>
<td>0.301 ± 0.028</td>
<td>2.604 ± 0.0190</td>
<td>0.338 ± 0.050</td>
<td>10.72 ± 1.77</td>
<td>12.69 ± 2.48</td>
<td>0.320 ± 0.028</td>
<td>0.310 ± 0.036</td>
<td>±3.79</td>
<td>±3.96</td>
</tr>
<tr>
<td>Lentinan 1.0</td>
<td>10</td>
<td>0.762 ± 0.121</td>
<td>6.591 ± 2.000</td>
<td>7.111 ± 1.513</td>
<td>0.0911 ± 0.0151</td>
<td>0.0949 ± 0.0165</td>
<td>0.088 ± 0.0143</td>
<td>0.463 ± 0.0143</td>
<td>0.325 ± 0.035</td>
<td>2.861* ± 0.138</td>
<td>0.437** ± 0.191</td>
<td>11.18 ± 1.91</td>
<td>13.25 ± 2.25</td>
<td>0.349 ± 0.041</td>
<td>0.343 ± 0.039</td>
<td>±2.74</td>
<td>±2.61</td>
</tr>
<tr>
<td>Lentinan 1.0 + Dextran</td>
<td>10</td>
<td>0.727 ± 0.064</td>
<td>7.340 ± 2.468</td>
<td>5.895 ± 0.988</td>
<td>0.0911 ± 0.0900</td>
<td>0.0923 ± 0.0176</td>
<td>0.044 ± 0.0176</td>
<td>0.455 ± 0.0176</td>
<td>0.313 ± 0.022</td>
<td>2.867* ± 0.0248</td>
<td>0.408** ± 0.0095</td>
<td>10.03 ± 1.33</td>
<td>11.45 ± 1.85</td>
<td>0.332 ± 0.038</td>
<td>0.323 ± 0.027</td>
<td>±2.78</td>
<td>±3.55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recovery</th>
<th>No. of Brain (%)</th>
<th>Hypophysis (mg%)</th>
<th>Thyroid (mg%)</th>
<th>Submandibular Right (%)</th>
<th>Submandibular Left (%)</th>
<th>Thymus (%)</th>
<th>Lung (%)</th>
<th>Heart (%)</th>
<th>Liver (%)</th>
<th>Spleen (%)</th>
<th>Adrenal Right (%)</th>
<th>Adrenal Left (%)</th>
<th>Kidney Right (%)</th>
<th>Kidney Left (%)</th>
<th>Ovary Right (%)</th>
<th>Ovary Left (%)</th>
<th>Uterus (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 % Mannitol</td>
<td>10</td>
<td>0.662 ± 0.110</td>
<td>6.222 ± 1.140</td>
<td>5.943 ± 0.796</td>
<td>0.0758 ± 0.0142</td>
<td>0.0764 ± 0.0142</td>
<td>0.276 ± 0.045</td>
<td>2.394 ± 0.046</td>
<td>0.158 ± 0.161</td>
<td>2.09 ± 0.048</td>
<td>0.298 ± 0.048</td>
<td>8.09 ± 2.57</td>
<td>8.54 ± 2.82</td>
<td>0.427</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lentinan 0.01</td>
<td>10</td>
<td>0.671 ± 0.082</td>
<td>7.492 ± 1.562</td>
<td>6.102 ± 1.420</td>
<td>0.0839 ± 0.0123</td>
<td>0.0883 ± 0.0197</td>
<td>0.388 ± 0.027</td>
<td>2.485 ± 0.031</td>
<td>0.261** ± 0.031</td>
<td>2.13 ± 0.052</td>
<td>9.11 ± 2.13</td>
<td>10.42 ± 1.83</td>
<td>0.301 ± 0.027</td>
<td>0.297 ± 0.025</td>
<td>±1.79</td>
<td>±2.35</td>
<td>±0.341</td>
</tr>
<tr>
<td>Lentinan 0.1</td>
<td>8</td>
<td>0.639 ± 0.064</td>
<td>6.666 ± 2.248</td>
<td>6.121 ± 1.010</td>
<td>0.0873 ± 0.0122</td>
<td>0.0807 ± 0.0120</td>
<td>0.409 ± 0.029</td>
<td>2.508 ± 0.029</td>
<td>0.277** ± 0.029</td>
<td>1.67 ± 0.082</td>
<td>8.75 ± 1.67</td>
<td>9.83 ± 2.36</td>
<td>0.302 ± 0.045</td>
<td>0.297 ± 0.045</td>
<td>±3.41</td>
<td>±3.28</td>
<td>±0.144</td>
</tr>
<tr>
<td>Lentinan 1.0</td>
<td>7</td>
<td>0.646 ± 0.038</td>
<td>5.318 ± 1.488</td>
<td>5.737 ± 1.915</td>
<td>0.0854 ± 0.0127</td>
<td>0.0821 ± 0.0193</td>
<td>0.377 ± 0.029</td>
<td>2.450 ± 0.028</td>
<td>0.274** ± 0.028</td>
<td>1.35 ± 0.065</td>
<td>8.46 ± 1.35</td>
<td>9.46 ± 1.61</td>
<td>0.303 ± 0.014</td>
<td>0.286 ± 0.014</td>
<td>±2.38</td>
<td>±2.92</td>
<td>±0.093</td>
</tr>
<tr>
<td>Lentinan 1.0 + Dextran</td>
<td>10</td>
<td>0.657 ± 0.110</td>
<td>7.187 ± 1.364</td>
<td>5.784 ± 1.064</td>
<td>0.0926 ± 0.0163</td>
<td>0.0872 ± 0.0193</td>
<td>0.381 ± 0.045</td>
<td>2.669 ± 0.045</td>
<td>0.264** ± 0.059</td>
<td>4.35 ± 3.18</td>
<td>9.47 ± 4.35</td>
<td>10.87 ± 3.18</td>
<td>0.305 ± 0.045</td>
<td>0.307 ± 0.045</td>
<td>±7.56</td>
<td>±8.27</td>
<td>±0.486</td>
</tr>
</tbody>
</table>

Data represent mean value ± SD.

* : Significantly different from 5 % Mannitol group, p<0.05.

** : Significantly different from 5 % Mannitol group, p<0.01.
慢性毒性のレンチン

0.01 mg/kg群で2/10例、1.0 mg/kg群で3/10例に萎縮が認められた。この所見は休薬により回復が認められた。

精巣上体には黄色の軟化化した部位が認められる個体がレンチン投与群に散見されたが、これは病理組織学的に精子肉芽腫と診断された。

胸腔・腹腔のリンパ節の中では腸間膜リンパ節が最も著明に腫大した。リンパ節の腫大は6ヵ月の試験終了時に最も著明で雌雄とも対照群を除いた全群に認められ、用量依存性も認められたが、休薬により回復する傾向を認めた。

この他、偶発所見と考えられるものとして、雄においては腹腔内に母指頭大の腫瘤が3ヵ月目の0.01 mg/kg群に1例、雌においては膀胱結石と膀胱炎が3ヵ月目の0.01 mg/kgと0.1 mg/kg、6ヵ月目の0.01 mg/kg、回復試験終了時の1.0 mg/kgの各群に1例ずつ認められ、乳腺腫が回復試験の0.01 mg/kg群に1例認められた。また胸腺、外腺体、胃、顔下腺等に軽度な点状出血やうっ血をみることがあったが、いずれも軽度で用量依存性もなかった。

+Dex群の45日目に切迫失血を行なった2例では、肺の発赤と浮腫の他には、脾腫大、腸間膜リンパ節の腫大が認められた程度で重篤な所見はなかった。

11. 病理組織所見

亜急性毒性試験（石井ら，1980）にみられたものと同様の動脈炎が本試験でも観察された。動脈炎が認められた臓器は大脳、延髄（主に軟膜下）、甲状腺、胸腺、耳下腺、内涙腺、皮膚、耳介、尾、陰囊、大動脈、気管、心、肺、肝、食道、胃腸管、脾、腎、腸間膜、腸間膜リンパ節、前立腺、精巣、精巣上体、膀胱、乳腺、精巣で、ほとんどの臓器に認められた。動脈炎の発生頻度、用量を要約してTable 9に示した。

動脈炎のみられる動脈では中膜から外膜にかけて組織球あるいは線維芽細胞の増殖がみられた。動脈内膜にはほとんどの場合著変は認められなかったが、内膜の増殖あるいは内膜の硝子様変性のみられる場合もあり、また平滑筋細胞の変性も認められた。PTAH染色では線維素は証明されなかった。病変は主に小動脈に認められた。動脈炎の好発部位は精巣、精巣上体、脾、直腸であり、雌よりも雄にやや強く認められた。脾では中心動脈、直腸では粘膜固有層および粘膜下線、精巣や精巣上体では間質の小動脈で、精巣上体では精子肉芽腫を伴う個体もみられた。また腎ではLanghans巨細胞の出現をみたこともあり、また、尿細管の変性を伴う場合もあった。(Photo. 1-4)。

これらの病変はほとんどの場合、用量依存性が認められ、発生頻度も増加し、また3ヵ月目よりは6ヵ月目に強く認められた。回復試験では一般に軽減する傾向を示し、特に投与終了時の所見が軽度であった臓器では病変の認められないものもあった。Azan染色では程度に結合繊の増生が認められた。

Lentinan投与による網内系の変化は脾、腸間膜リンパ節、肝に著明に認められ、3ヵ月目よりは6ヵ月目に強く認められたが、回復試験では発生頻度に著変はなかったが、病変の程度からみると軽度ながら回復する傾向を認めた。脾においては類上皮細胞小結節のほか、Langhans巨細胞の形成もみられ、また高投与群では類上皮細胞の著明な腫張が認められた。腸間膜リン
<table>
<thead>
<tr>
<th>Table 9</th>
<th>Incidences of arteritis in rats administered with lentinan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treatment (6 months)</td>
</tr>
<tr>
<td></td>
<td>Sex</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerebrum</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Thymus</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Skin</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Heart</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Lung</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Liver</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Spleen</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Pancreas</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Kidney</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Stomach</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Duodenum</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Jejunum</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Ileum</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Coecum</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Colon</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Rectum</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Testis</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Epididymis</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Bladder</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
</tbody>
</table>

Cont.: 5% Mannitol M: male F: female
Figures in the table show the incidence of arteritis (No. of rats examined).
Chronic toxicity of lentinan

Table 10 Incidences of epitheriod nodules, pulmonary hemorrhage and hypospermatogenesis observed in lentian administered rats

<table>
<thead>
<tr>
<th>Treatment (6 months)</th>
<th>Recovery (3 months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Dose (mg/kg)</td>
</tr>
<tr>
<td>Cont. 0.01 0.1 1 1+Dex.</td>
<td>Cont. 0.01 0.1 1 1+Dex.</td>
</tr>
<tr>
<td>Micronodule of epithelioid cells</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>M 3(10) 8(10) 10(10)</td>
</tr>
<tr>
<td></td>
<td>F 5(10) 4(10) 8(10) 8(10)</td>
</tr>
<tr>
<td>Spleen</td>
<td>M 1(10) 1(10) 1(10) 1(10)</td>
</tr>
<tr>
<td></td>
<td>F 10(10) 10(10) 10(10) 10(10)</td>
</tr>
<tr>
<td>Mesenteric lymph node</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>M 10(10) 10(10) 10(10) 10(10)</td>
</tr>
<tr>
<td></td>
<td>F 10(10) 10(10) 10(10) 10(10)</td>
</tr>
<tr>
<td>Pulmonary hemorrhage</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>M 1(10) 1(10) 1(10) 1(10)</td>
</tr>
<tr>
<td></td>
<td>F 1(10) 2(10) 1(10) 1(10)</td>
</tr>
<tr>
<td>Hypospermatogenesis</td>
<td>M 4(10) 3(10) 9(10) 8(10)</td>
</tr>
</tbody>
</table>

Cont.: 5% Mannitol M: male F: female
Figures in the table show the incidence of arterites (No. of rats examined).

よりは6ヵ月目に強く認められたが、休薬により回復する傾向を示した。肺における出血が3ヵ月よりは6ヵ月目にやや強く認められたが、回復試験終了時には軽減する傾向を示した（Photo. 7）。耳介、尾、腋窩においては肉芽腫性炎が認められ、これが一般症状にみられた発赤や、尾端部の壊死の原因と考えられた。尾では動脈炎や、細胞浸潤、出血が認められたほか、静脈血栓がみられる例もあった。以上の所見がlentinan投与の影響と考えられる所見であった（Table 10）。

次にこれら以外の主な所見につき各臓器毎に述べる。
胸腺：軽度な点状出血が対照群を含めた各群の小数例に認められた。
涙腺：軽度なリンパ球浸潤や腺細胞の空胞変性が対照群を含めた各群に散見され、雄にやや強く認められた。
心：軽度な心筋炎が雄の対照群を含めた各群に散見された。
肺：異物性の肉芽腫を対照群を含めた各群の小数例に認めた。
肝：軽度な出血を伴う臓の壊死巣が対照群を含めた各群に散見され、高投与群でやや増加する傾向を認めたが、用量依存性は明確でなかった。本所見は個体別にみると、GOT値、GPT値の上昇例に一致する場合が多かった。そのほか、小肉芽腫も用量に関連性なく各群に散見された。
腎：リンパ球浸潤のほか、尿円柱や尿細管上皮の石灰沈着が対照群を含めた各群に認められた。
膀胱：剖検で認められた膀胱炎以外には細胞浸潤が対照群を含めた各群に散見された。
雄の3ヵ月目の剖検で認められた0.01 mg/kg群1例の腹腔内の腫瘤はSpindle cell sarcoma
Hajime SHIMAZU et al.

と診断された。そのほか、大脳、小脳、延髄、耳下腺、肺、前立腺、精巣上体には間質の細胞浸潤が認められたが、用量依存性はなく、軽度なものであった。

この他の臓器には特記すべき所見はなかった。

12. 電子顕微鏡的検査

肝：3ヵ月目の1.0 mg/kg群ではKupffer細胞は軽度に肥大し、類円をしめ、細胞質内には少数の食食された異物が認められた。肝細胞には特に異常はなかった。6ヵ月目の1.0 mg/kg 群ではKupffer細胞の一部には高電子密度の粒子を保有するものが見られたが、多くのKupffer細胞は肥大し細胞が集縄を形成しているにもかかわらず、食食顆粒は比較的乏しかった。肝細胞には対照群にも認められるミトコンドリアの異形がみられた。このほかの群には著変はなかった。回復終了時の所見ではKupffer細胞の肥大、増生が残存し、各種の形態の食食物がみられ、食食物が結合して大滴を形成する傾向もみられた（Photo. 8）。

腎：3ヵ月目の系球体、尿細管には特記すべき所見はなかった。6ヵ月目の検査では1.0 mg/kg群で系球体の基底膜に軽度の肥厚が散見されたほか、一部の上皮細胞の足突起、メサンギウム細胞あるいは内皮細胞の部分的な膨化がみられた。その他の群には著変はなかった。また回復試験では系球体基底膜の肥厚がみられたが、対照群との間に差はなかった。一方、尿細管には6ヵ月目の1.0 mg/kg群に少数の脂肪滴と小細胞の拡張によりと考えられる空胞が散見される程度であった（Photo. 9）。

脾：3ヵ月目の1.0 mg/kg群では特記すべき所見はなかったが、6ヵ月目の1.0 mg/kg群では肥大した細胞細胞に小細胞の拡張と小滴性の食食物の保有が認められた。回復試験では特記すべき所見はなかった（Photo.10）。

13. 10 mg/kg群の所見

前述した如く、10 mg/kg群では注射部位である尾の発赤、腫脹、尾端部の壊死が著しく、連日の投与が困難となったため、雄は5週目、雌は3週目に試験を中止せざるを得なかった。尾端の壊死は雄で28例中10例、雌で8例中8例に認められた。そのほかの所見としては、雌雄とも耳介の発赤、雄では陰囊の発赤が認められた。

剖検では、脾、腎間膜リンパ節の腫大、肺の点状ないし斑状の出血が認められた。

考 察

Lentinanのような高分子のグルカンを長期にわたり投与した毒性試験の報告はない。しかし、グルカンが reticuloendothelial system (RES) の刺激作用をもつことは、Rigg と Di Luzio (1961) の報告以来、周知の事実で、このような物質を長期に動物に投与した場合、RES および RES に関連する毒性パラメーターが変動することは容易に予想される。したがって lentinan 毒性試験の評価にあたっては lentinanのグルカンとしての物性、薬効に基する所見については十分に考慮を払わなければならない。

Lentinanの亜急性毒性（石井ら，1980）ですでに報告されているように、lentinan投与により脾、肝、リンパ節の RES の細胞が活性化される所見を得た。その程度は組織検査で脾、リン
Chronic toxicity of lentinan

パ節が肝よりも強い傾向を示した。肝では顕著に皮細胞の小結節に PAS陽性の顆粒を認めだが、胃の部分もかなり認められ、電子顕微鏡による検査でも Kupffer 細胞内の貪食顆粒は比較的少なかった。このような RESの活性化は 3ヶ月間の休薬後でも明確に残存したが回復する傾向は認められなかった。1.0mg/kg群とDex群の比較では著明な差はなかった。

グルカン投与でマウスの末梢血液中の白血球の増加を来たすことが報告されている（Burgaleta と Golde, 1977）。亜急性毒性試験および今回の慢性毒性試験でも白血球数が増加したが、慢性毒性試験では白血球百分率で好中球の増加は認められなかった。免疫療法剤として知られる OK-432でも好中球増多作用が報告されており、OK-432投与後数時間後にみられる一過性の好中球增多は骨髄内貯蔵プールの好中球の循環血中遊出刺激作用によるものと、また1〜2週以降の持続的増多は体内総数の増加に伴うものでその機序の一因としてリンパ球からの colony stimulating factor (CSF)産生刺激を介してのものと推察されている（古沢ら, 1977）。好酸球については逆に減少する傾向を示した。骨髄像の検査でも好酸球の減少傾向がうかがわれることから骨髄抑制を疑うべきであろうが、連日の lentinan 投与のストレスによるものも否定はできない。

次に、lentinanの毒性として最も典型的なものとして、動脈炎の多発が挙げられる。今回の慢性毒性試験における動脈炎の発生の同様は1ヶ月の亜急性毒性のそれと大差はなかった。また回復試験では回復の傾向が認められた。京極（1978）は Polyarteritis nodosa 型動脈炎の発症に 4つの因子を挙げた。それは、①動脈壁の血漿透過性の亢進、壁内組織流の停滞、②免疫 complex, fibrin を始めとした高分子の蛋白体の血中循環と動脈壁内への滲出、沈着、③動脈壁とくに筋細胞の変性坏死、④血液の流れや圧、であり病態によりその initiationは様々なありがるが、それらが次々に4つの因子を引き出して、それが出発する形態的なフィブリノイド動脈炎になるものと述べている。lentinan投与によりみられる動脈炎の変性については、今回の試験の所見では解明されないが、動脈壁の血漿透過性の亢進については耳介、尾、臓膿の発赤、などの所見から、これをある程度うかうるものと考えられる。

Lentinan投与群でβ-グロブリン分画の上昇傾向がみられた。前田ら（1976）はマウスに lentinan を5日間投与した後得られた血清中に、β-グロブリンに属すると考えられる蛋白成分の著しい増量を報告し、この現象は抗腫瘍性を示す多糖を投与したときに認められる現象と述べている。本試験により得られたβ-グロブリンの上昇も抗腫瘍効果に関連する変化と考えられる。

精巣における精子形成不全については、lentinanの直接的な精子形成抑制作用でなく、むしろ精巣や臓膿の血管炎や間質の炎症に起因する所見と推察される。尿検査では回復試験で潜血反応陽性の個体が各群に1〜2例みられたが、亜急性毒性試験でみられたごとく膀胱における出血は認められず、また用量依存性もないと考えられなかった。肝にみられた肝細胞の果状壞死や GOT, GPT の上昇については、それが対照群にもみられ、用量依存性が不明瞭でないことから、なんらかの環境要因による偶発所見と推察された。さらに眼底所見にみられた動脈の拡張傾向や、静脈の狭小傾向については病理組織学的に網脈絡膜や視神経の萎縮などの異常所見は認められず、回復試験でも著変のなかったことから毒性学的な意義
Hajime SHIMAZU et al.

づけは困難である。

以上、今回の試験で得られた主要所見につき考察を加えたが、次にこれらにつき用量との関
連から小括する。動脈炎は 0.01 mg/kg 群から認められたが、6 ヶ月目では内臓、肺、脾、腎、
直腸、直立、各臓器に限られ、その程度や発生頻度も弱く、回復傾向も認められる。
0.1 mg/kg 群ではさらに、眼、膀胱、大脳、心が 1.0 mg/kg 群では延髄、皮膚、耳介、精巣
が加わりその程度も強くなった。RES の活性化については 6 ヶ月目では脾重量増加が 0.01 mg/kg
群では有意差のない出せる程度の軽度なものであり、その組織像も細胞障害性の変化ではな
かった。1.0 mg/kg 群では著明な重量増加と類上皮細胞小結節の増生が認められたが、回復試験
では回復傾向がみられた。精子形成不全は 6 ヶ月目の 0.01 mg/kg 群に認められたが、半数群
の個体にはなんら異常はなく、回復試験ではその程度を軽減した。次に各種臨床検査値につい
てみると、白血球数の増加、好酸球数の減少、血小板数の減少、β-グロブリン値の増加などが、
lentinan 投与群で用量依存性を示したが、0.01 mg/kg 群では、いずれも軽度で有意差を認め
たものは 6 ヶ月目の雌の好酸球のみであった。0.1 mg/kg 群では白血球、好酸球、血小板に、1.0
mg/kg 群ではさらに β-グロブリン分画に有意差がみられた。

以上を総合すると、0.01 mg/kg でも lentinan 投与による動脈炎、RES の活性化、精子形成不
全、好酸球の減少が認められたため、最大無作用量は雌雄とも 0.01 mg/kg 以下と推定されるが、
その程度は軽度で休薬により回復する傾向を示した。また、体重の増加や症状観察には著変が
なかった。

謝　辞

本稿を終えるにあたり、本実験に御協力いただいた当研究所第 1 研究室の諸氏に深謝の意を
表します。（研究期間：昭和54年 2 月13日～昭和54年12月5日）

文　献

Burgaleta C., and Golde, D.W., (1979): Effect of glucoc on granulopoiesis and macrophage
古沢新平、森徳英夫、斎藤義治、松浦康二、小松英明、穴戸義雄 (1977)：溶連菌製剤 OK-432 の
好中球増多作用について、医学のあゆみ，103，215–217.
石井耕行，字佐美洲治，藤本積，森雪弘文 (1977)：レンチナ (生理食塩水溶液) のラットによる 1 ヶ
月静脈内投与試験 (未発表データ)
石井耕行，字佐美洲治，藤本積，森雪弘文，橋本重文，市村正道 (1980)：Lentinan のラットにおけ
る急性毒性試験-5 週間静脈内投与試験，本誌投稿中。
京極方久 (1978)：多発性動脈炎の病因についての一考察，日本臨床，36，704–711.
前田幸子，石村和子，千原義男 (1976)：抗腫瘍多糖と癌に対する宿主の抵抗，蛋白質・核酸・酵素，
Chronic toxicity of lentinan

Photo. 1. Female rat, 1 mg/kg/day of lentinan (+Dex), 6 months. Liver: Arteritis of interlobular artery. H-E stain, 2.5×20.

Photo. 2. Male rat, 1 mg/kg/day of lentinan, 6 months. Kidney: Arteritis of arteriole in cortex. H-E stain, 2.5×10.
Photo 3. Male rat, 1 mg/kg/day of lentinan, 6 months. Testis: Arteritis and hypospermatogenesis, H-E stain, 2.5×20.

Photo 4. Male rat, 1 mg/kg/day of lentinan, 6 months. Epididymis: Spermatic granuloma. H-E stain, 2.5×4.
Chronic toxicity of lentinan

Photo 5. Male rat, 1 mg/kg/day of lentinan (+ Dex), 6 months. Spleen: Micronodule of epithelioid cells and proliferation of reticular cells. H-E stain, 2.5×20.

Photo 6. Male rat, 1 mg/kg/day of lentinan, 6 months. Mesenteric lymph node: Micronodule of epithelioid cells and hypertrophy of reticular cells. H-E stain, 2.5×20.
Photo 7. Male rat, 1 mg/kg/day of lentilin, 6 months. Lung: Focal hemorrhage, H-E stain, 2.5 x 4.

Photo 8. Male rat, 1 mg/kg/day of lentilin, 6 months. Liver: Kupffer cell contains high density particles. x20000.
Chronic toxicity of lentinan

Photo 9. Female rat, 1 mg/kg/day of lentinan, 3 months. Kidney:
Basement membrane of glomerulus is partly thickened. x6600.

Photo 10. Male rat, 1 mg/kg/day of lentinan, 6 months. Spleen:
Dilatation of endoplasmic reticulum and small particles is seen
in reticulum cells. x5200.