Journal of Thermal Science and Technology
Online ISSN : 1880-5566
ISSN-L : 1880-5566
Papers
Formation of Lean Premixed Surface Flame Using Porous Baffle Plate and Flame Holder
Pil Hyong LEESang Soon HWANG
Author information
JOURNAL FREE ACCESS

2013 Volume 8 Issue 1 Pages 178-189

Details
Abstract

A lean premixed surface flame has many advantages including low CO(Carbon Monoxide) and NOx(Nitrogen Oxide) emission and applicability of a small combustion volume leading to compact design. These advantages make it applicable to burner for condensing boilers with high thermal efficiency. Moreover recent severe regulation of global warming gas favored a lean premixed surface flame in development of a condensing boiler burner.
This study focused on emission characteristics of lean premixed flame and the effect of flow distribution on flame stability of a surface flame in a cylindrical porous metal plate burner. For conceptual design of surface flame burner, the numerical calculation of a flow pattern inside the burner was performed and the calculated data were used for design of the burner system including the baffle plate and flame holder.
The results show that the surface and stable premixed flame can be generated by implementing the proper baffle plate and flame holder. The surface cylindrical flame mode is changed into green flame, yellow radiation flame, blue flame and blow off with decreasing equivalence ratio. The blue flame has a wide stability region in the stability curve and showed the lowest CO and NOx emission at low equivalence ratio. And CO decreased as the mixture ratio became leaner but NOx showed almost the same emission level. For stability of a surface cylindrical flame, it was found to be very important to select the proper distribution of holes in a baffle plate and install the flame holder to prevent blow off at the rim of the cylindrical burner. NOx was measured below 6 ppm (0% oxygen base) from equivalence ratios 0.706 to 0.769 through the proper design of baffle plate and flame holder. CO which is a very important emission index in residential gas boiler was observed below 49.1ppm under the same equivalence ratio range.

Content from these authors
© 2013 by The Japan Society of Mechanical Engineers and The Heat Transfer Society of Japan
Previous article Next article
feedback
Top