Review

The Epidemiology of Koala Retrovirus

コアラレトロウィルスの疫学

Greg Simmons¹, Paul Young², Jeff McKee³ and Joanne Meers¹; ed., Tetsuo MIZUNO⁴

¹School of veterinary Science, University of Queensland, Gatton Campus, Queensland, Australia
²School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
³Ecosure, West Burleigh, Queensland, Australia
⁴Australia-Japan Wildlife Conservation and Education Foundation, Pullenvale, Queensland, Australia

Summary

A novel Gammaretrovirus, named Koala retrovirus (KoRV) was identified in koalas in 2000. Subsequent testing has shown that KoRV appears to be widespread throughout the wild koala population in Australia. KoRV is apparently unique in that it is the only known example of an exogenous retrovirus which is actively undergoing the process of endogenisation. While there is currently little direct evidence that KoRV causes overt disease in koalas, it is possible or even likely that KoRV infection plays a significant role in the pathogenesis of various neoplasms and a variety of immunosuppressive disorders which are commonly diagnosed in koalas. It appears that KoRV may have arisen through the cross species transmission of a closely related retrovirus in a native Australian rodent, the grassland melomys. Both of these viruses are closely related to a third retrovirus, Gibbon ape leukaemia virus (GALV). GALV was first isolated in the late 1960’s from captive gibbons in Thailand that were suffering from leukaemia. To date, the source of GALV remains unknown.

Keywords : Koala, retrovirus, chlamydia, Australia

Introduction

Retroviruses are single-stranded RNA viruses which are unique in that they use their RNA genome as a template to synthesize a cDNA copy through the action of a novel enzyme, reverse transcriptase. After this viral DNA has been synthesised, it is inserted into the hosts’ genome through the action of a second viral protein, integrase (Fig. 1). This integrated form of the viral genome is referred to as proviral DNA. If such an integration process occurs in a germ line cell (sperm or ova), then the provirus may be passed down vertically to future offspring via Mendelian inheritance. In this case the retrovirus is termed endogenous. Retroviruses that are infectious and spread horizontally are termed exogenous. Endogenous retroviruses are widespread throughout vertebrate hosts, and many appear to be viral “fossils” that are remnants of ancient infections which occurred millions of years ago*. Retroviruses have been shown to cause a range of diseases in their hosts, including neoplasia, central nervous system and immunosuppressive disorders⁵⁻⁷.

Identification of Koala retrovirus

It has long been known that koalas are particularly susceptible to a range of disease conditions including chlamydiosis and various neoplastic diseases, particularly lymphoid tumours¹ⁱ⁻¹³. This led to the speculation that a retrovirus may play a role in the pathogenesis of these conditions¹⁴. In 1999 a partial sequence of a koala retrovirus was published¹⁵, and in the following year the full sequence was published. The virus was named Koala retrovirus (KoRV)¹⁶.

Prevalence of KoRV.

Based on initial sampling, KoRV was found to be widespread in wild koalas. Animals tested in Queensland and New South Wales were all shown to harbour the provirus, while those from mainland Victoria and from introduced populations on islands off the Victorian coast had a lower prevalence. Twenty-six koalas

* Corresponding author :
Greg Simmons
School of Veterinary Science, University of Queensland, Gatton campus, Gatton, Qld, 4342, Australia
Tel + 61-7-5460 1950, Fax + 61-7-5460 1922
E-mail : g.simmons@uq.edu.au
from Kangaroo Island, off the coast of South Australia, were KoRV provirus-free\(^{(17)}\). A later study which screened a larger number of animals on this island found about 15% of koalas were KoRV provirus positive (unpublished observations; Fig. 2). This may have been due to differences in sample size or possibly to the recent spread of the virus through the Kangaroo Island population.

Koalas housed in overseas zoos have also been shown to be KoRV-positive. All five koalas tested at Kobe Municipal Oji Zoo, Japan were found to be KoRV-provirus positive, and lymphocytes from these koalas yielded infectious virions when co-cultured with human embryonic kidney (HEK) 293T cells\(^{(18)}\). In addition, mitogen stimulated peripheral blood mononuclear cells isolated from a healthy male koala housed at Duisburg Zoo, Germany produced infectious KoRV.

The role of KoRV in disease.

Koalas, alone among Australian wildlife, appear to be prone to high levels of opportunistic infections such as chlamydiosis and to various neoplastic diseases. As noted above, this initially led to the suggestion that a retrovirus may have some role in the pathogenesis of these diseases. The identification of KoRV intensified this speculation, although to date little has been published on the link between KoRV and disease in koalas. There is anecdotal evidence that southern koala populations, which have a lower prevalence of KoRV, also have a much lower incidence of chlamydiosis and neoplasia (Johnson, G pers.comm). High levels of KoRV viraemia (viral RNA) in captive koalas have been shown to correlate with a significantly higher incidence of lymphoid tumours. This study also demonstrated an increased incidence of chlamydiosis in koalas with high viral RNA loads, although the result was not statistically significant\(^{(20)}\).

KoRV : endogenous or exogenous

For many known endogenous retroviruses, the initial endogenisation event occurred many thousands or millions of years ago. Once the provirus is fixed in the host organism’s genome, it may become subject to genetic change over time via the acquisition of mutations and deletions. Eventually these changes lead to fatal errors in the proviral sequence which renders it incapable of producing intact virions. The provirus thus degrades into so-called “junk” DNA, which tends to become fixed at specific loci within the species’ genome\(^{(4,21)}\). The situation with KoRV is different in that it appears to be an actively replicating exogenous virus which is currently undergoing the process of endogenisation, at least in some populations.

Evidence for this comes from Southern hybridisation analysis of DNA from related individuals from Queensland, as well as DNA from different tissues from the same animal. Related individuals show banding patterns that suggest they have acquired their proviral insertions from both parents, i.e. in a Mendelian fashion. Banding patterns from different tissues in the same animal give an identical pattern, suggesting that the proviral insertions were acquired at the time of fertilisation. In addition, banding patterns between different individuals are unique, indicating there has not been sufficient time for the provirus to become fixed in the koala genome. Thus it appears that KoRV has recently endogenised its host\(^{(17)}\).

However, KoRV is also an actively replicating infectious virus. It has been cultured from koala peripheral blood mononuclear cells (PBMCs), and is able to produce active infection in Wistar rats\(^{(19)}\). Thus, this is the only currently known example of an infectious retrovirus undergoing endogenisation in real time\(^{(16,19)}\).

Transmission and spread of KoRV

By definition, an endogenous retrovirus is spread vertically through simple Mendelian inheritance, and this then is one way KoRV must be transmitted, at least in some animals. However KoRV is also an infectious virus and presumably must be trans-
mitted horizontally. Currently little is known about these mechanisms. Our group has been able to demonstrate the transmission of KoRV in vitro from infected blood to an artificial feeding medium using the paralysis tick (Ixodes holocyclus). While an interesting finding, this mechanism is unlikely to be a major route for the mechanical transmission of the virus (unpublished observations).

However, several biting arthropods have been implicated in the mechanical transmission of other retroviruses, including Feline leukaemia virus, Jembrana disease virus and Equine infectious anaemia virus. Koalas are a relatively sedentary species and are usually solitary except during the breeding season. There is therefore little direct interaction between individuals that might allow the spread of KoRV between animals. Thus a mechanical vector such as a biting arthropod might play an important role in the horizontal spread of KoRV. High levels of KoRV viral RNA (up to 10^11 copies/ml plasma) have been detected in some animals. If these high viral RNA levels represent a corresponding high titre of infectious virions, it is feasible that a small volume of KoRV-positive blood on the mouthparts of a biting arthropod may be able to transfer an infectious dose to an uninfected koala.

Viral RNA has been detected in milk and semen from infected animals by our group (unpublished observations). However, the significance of this finding in relation to the transmission of KoRV remains to be determined.

The link between KoRV and Gibbon ape leukaemia virus.

When the complete sequence of the KoRV genome was determined, it was found that it shares a very close homology with Gibbon ape leukaemia virus (GALV) genome. GALV is a Gammaretrovirus which has been implicated in an outbreak of leukaemia in white-handed gibbons (Hylobates lar), which were housed at the SEATO medical research facility in Bangkok in the late 1960s. Subsequent to this initial outbreak, several other strains of GALV have been isolated from captive gibbons and other sub human primates in the US and Bermuda. KoRV and GALV are so closely related that it seems almost certain that these two viruses share a common ancestor, and that there has been a cross species transmission between koalas and white-handed gibbons.

This then raises the question of how this species jump has occurred given the phylogenetically distinct relationship of the host species and their geographical separation.

Both KoRV and GALV are related to the murine leukaemia viruses, and it would appear that at least one rodent species has contributed to this cross species transmission. Another Gammaretrovirus sequence with very close homology to both KoRV and GALV has been detected in DNA from the grassland melomys, (Melomys burtoni) (unpublished observations). The grassland melomys is a native Australian rodent which inhabits the dry sclerophyll forests from approximately Darwin in the north, extending down the east coast of Australia to about Sydney. The same or a closely related species also occurs in areas of New Guinea. Thus its distribution overlaps with that of koalas for a significant part of its range.

Given the very close homology between KoRV and the melomys retrovirus and the fact that koalas and grassland melomys may be found in the same habitat, it is possible that there has been a species jump between the grassland melomys and koalas by this retrovirus. Whether the spread was from koalas to melomys or vice versa is not known. It is also not known whether the melomys virus is endogenous or exogenous, or perhaps both, as is the case with KoRV. However, the sequence isolated from melomys DNA contains intact open reading frames, which suggests that it is exogenous or perhaps only recently endogenised.

While the melomys retrovirus is the possible origin of KoRV, it does not explain the presence of GALV in the captive gibbons in Bangkok in the late 1960s. While the source of GALV remains unknown, it is possible that another vertebrate host, possibly a rodent, was the vector which introduced the virus to the gibbons. This hypothesis requires the agency of a rodent other than the grassland melomys, since this species does not occur in south east Asia.

In the 1970s, retroviruses isolated from Asian feral mouse (Mus caroli) and another Asian rodent, Vandeleuria oleracea, were shown to be antigenically similar to GALV. This led to the suggestion that the GALV outbreak had occurred through cross species transmission from rodents to gibbons. However, comparison of the genetic sequences of these rodent viruses has demonstrated that they are not sufficiently closely related to GALV for this to be a reasonable hypothesis.

Discussion

Since the isolation and sequencing of KoRV in 2000 it has become apparent that this retrovirus is widespread throughout wild koalas in Australia. Existing evidence is that the virus may have first entered the koala population only in the past 200 years or even more recently and has become widespread except in some southern populations.

While there is more research required, the apparent high prevalence of the virus throughout significant areas of wild koala populations is a cause for real concern. As yet there has been little direct evidence that KoRV is a cause of disease in koalas, although one study has shown a positive correlation between levels of KoRV viraemia and the incidence of neoplastic disease in captive koalas.

However the high prevalence of certain diseases in koala populations that also have a high prevalence of KoRV-positive animals is suggestive that KoRV may play an important role in the pathogenesis of these diseases. Immunosuppressive disorders and neoplasia have been shown to be caused by Gammaretroviruses in other species and GALV, a close relative of KoRV has been shown to be highly oncogenic in gibbons and other sub human primates. These diseases appear to be rare in some southern koala popula-
tions where the prevalence of KoRV is much lower. If it can be clearly demonstrated that KoRV plays a direct role in the pathogenesis of these diseases in koalas then urgent action is warranted in order to restrict the spread of the virus and to pursue possible therapeutic and/or prophylactic strategies for KoRV-positive animals.

While the source of GALV probably does not impact directly on koala biology it remains an intriguing mystery in the field of retrovirology and is clearly related in some way to the origins of KoRV. Further work should be done, particularly screening of DNA from rodents endemic to Thailand in order to determine if the source of the GALV outbreak can be found.

KoRV is unique in that it apparently exists both as an exogenous and endogenous virus in some koalas. While the spread of an endogenous virus is vertical, the mechanisms by which KoRV is transmitted horizontally remain to be determined. Biting arthropods are possibly involved and may be a significant mechanism for transmission. This is important where there are populations of both KoRV-positive and KoRV-negative koalas living in close proximity.

The koala is an iconic member of Australia’s unique fauna, and has suffered significant reduction in both its numbers and habitat since the advent of European settlement of Australia. The apparent recent introduction and spread of a potentially pathogenic retrovirus raises significant questions about the long term viability of koalas in the wild, and warrants significant additional research in this field.

References

コアラレトロウィルスの疫学

シモンズ グレッグ1*, ヤング ポール2, マッキー ジェフ3, メアーズ ジョーン1 監修 : 水野哲男4

要 旨

新奇なコアラレトロウィルス (KoRV) と呼ばれるガンマレトロウィルスが 2000 年にコアラより分離された。残念なことに引き続き行われた調査から, KoRV はオーストラリアのコアラの個体群に広く拡がっているようである。現在 KoRV は, 活発に内因性化する過程にある外因性レトロウィルスの唯一の知られている例であり, 非常にユニークなウイルスである。現在 KoRV が病気の原因となる直接的で明確な証拠はわずかであるが, KoRV 感染がコアラの臨床上, 通常よく診断され る種々の新生物や, 様々な免疫不全症の病因として重要な役割を果たしている可能性があるか, もしくはその確率が高い。KoRV は, 近縁であるオーストラリア固有のげっ歯類であるバートンメロミス (Melomys burtoni) のレトロウィルスの異種間交差感染を介して出現した可能性がある。これら 2 種のウィルスは, 第三番目のレトロウ イルスであるテナガザル白血病ウィルス (GALV) に対しても近縁である。GALV は白血病を罹患していたタイの捕獲下のテナガザルから 1960 年代後半に最初に分離された。しかし, 現在に至るまで GALV の感染源は不明である。

キーワード: コアラ, レトロウィルス, クラミジア, オーストラリア

レトロウィルスは, 新奇な酵素である逆転写酵素の働きにより, cDNA をコピーし合成するため, レトロウィルスの RNA ゲノムを鋳型として使用するという点でユニークな単鎖の RAN ウィルスである。このウィルスの DNA が合成された後, 2 番目のウィルス蛋白であるインテグレーソスの作用により, 合成された DNA の宿主ゲノムに挿入される1,2(Fig. 1)。この結晶された形のウィルスゲノムは, プロウィルス DNA と呼ばれる。もし, そのような合成過程が生殖系細胞 (精子または卵子) で起こると, そのプロウィルスはメンデル遺伝を通じて, 将来の子孫に垂直に受け継がれる可能性がある。この場合, レトロウィルスは内因性ウィルスと呼ばれる3)。一方, 水平に感染し, 抜けるレトロウィルスは外因性ウィルスと呼ばれる。内因性レトロウィルスは, 祝福動物の宿主全体に広く拡がり, 多くは何百万年も前にきた古代の感染の名残のようにも見ることができる4)。また, レトロウィルスはその宿主に, 新生 物や中枢神経系及び免疫抑制性の疾患を含む一連の疾患を起こすことが証明されている5)。コアラレトロウィルスの同定

コアラは, クラミジア症や腫瘍性疾患, 特にリンパ性腫 瘤を含む一連の病的状態に関わっていることが長く知られている1)5)。この事から, レトロウィルスがこれらの状態の病因に重要な役割を果たしているかもしれないと考えられる6)。1999 年にはコアラレトロウィルスの一部の塩基配列が発表され16), 翌年には全塩基配列が発表された。その結果, このウィルスはコアラレトロウィルス (KoRV) と命名された17)。

KoRV の有病率

初めての野生個体からのサンプリングにより, KoRV が野生のコアラに広く拡がっていることが判明した。クイーンズランド州とニューサウスウェールズ州で検査された動物は, すべてプロウィルスを保有していたが, 感染したテナガザル白血病ウィルス 1960 年代中半に最初に分離された。しかしながら, 検体数の差異が存在する可能性がある。この場合, レトロウィルスは内因性ウィルスと呼ばれる3)。一方, 水平に感染し, 抜けるレトロウィルスは外因性ウィルスと呼ばれる。内因性レトロウィルスは, 祝福動物の宿主全体に広く拡がり, 多くは何百万年も前にきた古代の感染の名残のようにも見えることができる4)。また, レトロウィルスはその宿主に, 新生 物や中枢神経系及び免疫抑制性の疾患を含む一連の疾患を起こすことが証明されている5)。
疾病における KoRV の役割

オーストラリアにおける野生のコアラは、クラミジア症のような日和見感染の高いレベルの発生や、種々の腫瘍性疾患を起こす傾向があるようである。前述したように、このことはレトロウィルスがこれらの疾病の病因において何らかの役割を果たしている可能性の示唆に基づいている。現在に至るまで、KoRV とコアラの疾病間の関連に関する報告は、ほとんど無くが、KoRV の同定が進むことになり、この様な考え方が強くなった。比較的 KoRV の有病率の低い南部のコアラ個体群では、クラミジア症や新生物形成の発生が非常に低い傾向にあるという逸話的証拠がある（Johnnson, G pers. comm）。高いレベルのウィルス血症（ウィルス RNA）を示している捕獲下のコアラは、リンパ球性腫瘍の発生と有意に高い相関関係があることが示されており、またこの調査では高いウィルス RNA の存在によりクラミジア症の発症が増加することも示されたが、その結果は統計学的には有意ではなかった20)。

内因性と外因性 KoRV

多くの知られている内因性レトロウィルスでは、内因性化の始まりは何千年、何百万年も前に起こっている。プロウィルスが、一旦宿主生物のゲノムに固定されると、それは突然変異や欠失を介して遺伝子的な変化を長年にわたって受けることになる。結局これらの変化は、プロウィルスの塩基配列に完全なビリオンを生産することが、不可能な致命的な誤りを起こす。そのようなプロウィルスは、結果としてその宿主のゲノム内の特定の遺伝子座に固定される傾向がある、いわゆる“ジャンク”DNAに分解する4, 21)。一方、KoRV では、少なくともいくつかの個体群で、現在内因性化の過程にあるが、活発に増殖している外因性ウィルスのようであるという点も明らかになり、一般のレトロウィルスとは異なっている。

これらの証拠は、クイーンズランド州においてある個体と血縁のある他の個体から採取した異なった組織を用いて解析した DNA のサザーンハイブリダイゼーションの解析の結果が裏付ける。血縁のある個体のバンドパターンは、その個体へのプロウィルスの挿入が両親から、すなわちメンドルの方法により起こったことを示唆していった。同一個体の異なった組織からのバンドの形状は同一であったことから、プロウィルスの挿入は受精時におこったことが示唆された。また、異なった個体のバンドパターンは個体ごとに特異的であり、これはプロウィルスがコアラのゲノムに固定されるまでの十分な時間がまだ経過していないことを示している。よって、KoRV は最近、宿主であるコアラ内に内因性化したと思われる17)。

しかし、KoRV は活発に増殖する感染性ウィルスである。KoRV はコアラの末梢血中の単核細胞（PBMCs）から培養され、ウィスターラットに活発な感染を起こすことができた。よって、これが内因性化を進行している感染性レトロウィルスの現在知られている唯一の例であると考えられる16, 19)。

KoRV の伝播と蔓延

定義上、内因性レトロウィルスは単純にメンデル遺伝により垂直に拡がる。しかし、KoRV は感染性のウィルスでもあり、おそらく水平にも伝播される可能性があると思われる。現在のところこれらの機構についてはほとんど知られていない。我々のグループでは、感染された動物の血液を直接的に非感染的な動物に感染させることで、KoRV の伝播を立証することができた。しかし、この感染の機械的伝播の主な経路ではなさそうである（未発表観察データ）。

一方、数種の刺咬性節足動物は、猫白血病ウィルス、ジェンブラナ病ウィルスおよび馬伝染性貧血ウィルスを含む他のレトロウィルスの機械的伝播に関係している22-24)。コアラは繁殖期を除いて、比較的定着性で独居性の動物である25)。そのため、動物間の KoRV の拡散を起こさせる可能性のある個体同士の直接的な接触は非常に少ない。これらの因子から、KoRV の感染において、刺咬性節足動物のような機械的媒介動物が重要な役割を果たしている可能性がある。ある動物においては、高いレベルの KoRV RNA（最高 10^{11} コピー/ml 血漿）が検出されている20)。もし、これらの高いウィルス RNA レベルが、ウィルスレベルに相当する高い力価の感染性ビリオンを表していると仮定すると、刺咬性節足動物の口部上の少量の KoRV 陽性の血液が、未感染のコアラに感染化を運ぶことは十分考えられる。

我々のグループによって、ウィルス RNA が感染した動物の乳や精液から発見されている（未発表観察データ）。しかし、KoRV の伝播との関係に関してこの発見の有意性はまだ確定していない。

KoRV とテナガザル白血病ウィルスとの関係

KoRV のゲノムの全塩基配列が確定されたとき、それは GALV のゲノムと非常に近い相同性を共有することが分かった16)。GALV は 1960 年代後半に、バンコクの SEATO 医療研究施設で飼育されていたシロテテナガザル（Hylobates lar）の白血病の発生に関与しているのはガンマレトロウィルスであることが明らかになった26, 27)。この最初の発生に続き、テナガザルやアメリカとバーミューダの他の類人猿からさらに数種の GALV 株が分離されている28, 29)。KoRV と GALV は非常に近縁であり、この 2 つは共通の祖先を持っていること、さらにコアラとシロテテ
ナガザルの間で異種交差感染があったことはほとんど確実なようである16,21)。このことは、これら2の宿主動物種の系統発生的に異なる関係および、これらの宿主の地理的な隔たりに関わらず、これらの種間でのジャンプがどのようにして起こったのかという疑問が生じた。

KoRVとGALVの両方ともネズミ白血病ウィルスと近い関係にある15)。さらに少なくとも1種類のゲッ歯類がこの異種交差感染に貢献した可能性がある。KoRVとGALVに非常に類似した塩基配列を持つもう一つのガンマレトロウィルスは、バートンメロミスのDNAから発見された(未発表観察データ)。バートンメロミスは、北はダーウィンあたりからオーストラリアの東海岸を南下してシドニーあたりまで乾燥した硬葉植物の森に生息するオーストラリア固有のゲッ歯類である。同じまたは近縁種がパプアニューギニアでも発見された30,31)。このようにバートンメロミスの分布は、コアラの生息地の範囲とかなりの部分で一致している。

KoRVとメロミスレトロウィルスが非常に類似していること、およびコアラとバートンメロミスが同じ生息地で発見される可能性が高い実例で、これらのレトロウィルスの起源は非常に興味深い。また、この可能性は、KoRVの起源が東南アジアからオーストラリアに伝播した結果であると考えられる。

2000年にKoRVが分離、塩基配列決定されて以来、このレトロウィルスがオーストラリアの野生のコアラ全般に広く拡がっていることが明らかになった。現在までに得られた証拠から、このウィルスが最初にコアラの個体群に侵入したのは、おそらく過去200年か、またはそれよりも近年23)であり、オーストラリア南部の一部の個体群を除き広くオーストラリア全土に拡がっている。更なる調査が必要であるが、野生のコアラの全個体群の相当な範囲において、KoRVウィルスが明らかに蔓延しているということは真に憂慮することである。一部の調査報告で、捕獲飼育下のコアラにおいてKoRVによるウィルス血症のレベルと、腫瘍性疾患の発生に正の相関関係があることが証明されたが、KoRVがコアラにおいて疾病の原因となるという直接的な証拠は今までのところほとんどない。

しかし、KoRV有病率の高いコアラの個体群では、また特定の病状の有病率も高いということは、KoRVがこれらの病状の病因において重要な役割を果たしていることを示唆している。他の動物種において免疫抑制性疾患や新生物形成、ガンマレトロウィルスが原因することが証明されており、KoRVに近縁のGALVはテナガザルや他の類人猿において高い腫瘍原性を有することがすでに明らかにされている。これらの疾病は、KoRVの有病率が非常に低い南部の一部のコアラの個体群では稀なようである。もし、コアラにおいてKoRVがこれらの病状の病因に直接関わっていなかった場合、KoRVの感染源がコアラの生物学に対し直接影響を与えることはおそらく無いが、それはレトロウィルス学の分野において興味のある課題である。また、明らかにKoRVの起源に何らかの関係があると考えられる更なる調査として特にGALVの勃発の感染源を発見できるかどうかを判断するための調査を、タイ固有のゲッ歯類からのDNAのスクリーニングとして行う必要がある。

KoRVは一部のコアラにおいて、明らかに外因性と内因性の両方が存在している点はユニークである。内因性ウィルスの広がりは垂直的であるが、KoRVが水平的に伝播される機構も確かななければならない。刺咬性節足動物はその伝播に関わっている可能性があり、重要な伝搬機構の可能性がある。

コアラはオーストラリアのユニークな動物相の象徴的な
メンバーであり、オーストラリアのヨーロッパ系の定住者の到来以来、その生息数と生息地の有意な減少に見舞われている。潜在的に病原性のあるレトロウィルスの明らかな近年の移入と広がりは、野生のコアラの長期的な生存力に関して重要な問題を生じており、このことは、KoRVを研究する分野を進めるための正当な根拠となっている。