Capsaicin-induced Relaxation in Rabbit Coronary Artery

Dongsoo YEON1, Seongchun KWON1, Youngho LEE1, Joongwoo LEEM1, Taicksang NAM1 and Ducksun AHN1*

1Department of Physiology, Yonsei University College of Medicine, Seoul, Korea

(Received 26 December 2000/Accepted 10 January 2001)

ABSTRACT. In the present study mechanism of inhibitory effects of capsaicin on the contractility of rabbit coronary artery were studied by measurement of isometric tension and intracellular Ca$^{2+}$ concentration. Capsaicin (1 μM to 30 μM) relaxed the coronary artery pre-contracted with prostaglandin (PG) F$_{2\alpha}$ (1 μM) in a concentration-dependent manner. The PGF$_{2\alpha}$-induced increase in intracellular Ca$^{2+}$ concentration was also inhibited. The effects of capsaicin were readily reversed by washing capsaicin from the bath. Capsaicin-induced relaxation was not attenuated by pretreatment with capsaizepine (1 μM), a blocker of vanilloid receptor or ruthenium red (1 μM), a blocker of non-selective cation channel. Previous exposure to a high concentration of capsaicin (100 μM) or repeated application of capsaicin did not eliminate the relaxation response to subsequent application of capsaicin. Increasing the external K$^+$ concentration to 80 mM significantly attenuated the capsaicin-induced relaxation with simultaneous change in intracellular Ca$^{2+}$ concentration. Pretreatment with iberiotoxin (100 nM), a blocker of Ca$^{2+}$-activated K$^+$ channel, only partially inhibited the capsaicin-induced relaxation. However, application of 4-aminopyridine (4-AP, 1 mM), a blocker of delayed rectifier K$^+$ current significantly inhibited the capsaicin-induced relaxation with concomitant attenuation of the effect on intracellular Ca$^{2+}$ concentration. These results indicate that capsaicin may have a direct relaxing effect on the smooth muscle contractility, and relaxation may be due to activation of the 4-AP-sensitive, delayed rectifier K$^+$ channels in the rabbit coronary artery.

KEY WORDS: capsaicin, coronary smooth muscle, delayed rectifier K$^+$ current, relaxation.

Capsaicin is a pungent constituent of red peppers and known to activate sensory nerve fibers via vanilloid receptor [20, 22–23]. Acute administration of capsaicin releases neuropeptide from sensory nerve endings, such as substance P, calcitonin gene related peptide (CGRP) and neurokinin A [7, 17]. These neuropeptides seem to play a role in the regulation of vascular and airway smooth muscle tone [8, 16, 21]. In addition to this neuropeptide-mediated effect, capsaicin has a diverse effect on smooth muscle contractility and ion channel activity, depending on the species and preparations. Capsaicin relaxes brachial smooth muscle through activation of Ca$^{2+}$-activated K$^+$ channels [5, 24], or constricts cerebral arteries by increasing Ca$^{2+}$ influx [4]. The inhibitory effect of capsaicin on Ca$^{2+}$ and K$^+$ current in cultured aortic smooth muscle cells has also been reported [15].

In coronary artery, capsaicin has been reported to increase coronary flow and decrease ischemic ventricular tachycardia which may be related to the decrease in Ca$^{2+}$ influx [2]. The authors suggest a protective role of capsaicin on the ischemic cardiac damage through maintaining adequate coronary flow. However, it is uncertain whether capsaicin relaxes coronary artery through the release of neuropeptide such as CGRP, or through the direct inhibition of coronary smooth muscle [3, 8, 15]. Thus, the primary goal of the present study was to examine the involvement of neuropeptides on capsaicin-induced coronary relaxation, and then elucidate the mechanism underlying the capsaicin-induced coronary relaxation by measuring vascular tone and intracellular Ca$^{2+}$ concentration ([Ca$^{2+}$]) in the presence of various blockers. The present results provide a evidence that the 4-AP sensitive, delayed rectifier K$^+$ current might be responsible for the capsaicin-induced relaxation and [Ca$^{2+}$], decrease in the rabbit coronary artery.

MATERIALS AND METHODS

Tissue preparation and measurement of tension: After anesthetizing a rabbit with pentobarbital sodium (60 mg/ Kg), the heart was extracted and placed in a preparation chamber containing a physiological salt solution (PSS). In the preparation chamber, meticulous dissection of the coronary arteries from neighboring tissues was done with ophthalmologic scissors and forceps. Coronary artery rings were suspended in a organ bath under a resting tension of 0.8 g. After equilibration for 1 hr in PSS, each rings was repeatedly exposed to 80 mM KCl solution until the responses became stable. The high K$^+$ solution was prepared by replacing NaCl with equimolar KCl. Muscle contraction was recorded isometrically with a force-displacement transducer and recorded on a computer.

Fura-2 loading and simultaneous measurements of tension and [Ca$^{2+}$]: [Ca$^{2+}$], and muscle contraction were measured simultaneously as described by Kwon et al. [12]. Muscle strips were exposed to acethoxymethyl ester of fura-2 (fura-2/AM, 5 μM) in the presence of 0.01% cremophore EL for 5–6 hr at room temperature (22–24$^\circ$C). After the fura-2 loading, coronary strip was placed in a experimental chamber and illuminated alternatively (48 Hz) with 340 nm and 380 nm light. The ratio of 500 nm fluorescence induced by 340 nm excitation (F340) and that induced by 380 nm excitation (F380) was detected with a spectrophotometer.
(CAF 110, Japan Spectroscopic, Tokyo, Japan). Increase in the ratio due to 70 mM KCl was considered as a reference response (100%).

Solutions and chemicals: PSS had following composition (mM): NaCl 118; KCl 4.8; CaCl$_2$ 2.5; KH$_2$PO$_4$ 1.2; MgSO$_4$ 1.5; NaHCO$_3$ 25; Glucose 11. PSS was saturated with a mixture of 95% O$_2$ and 5% CO$_2$ to adjust pH to 7.4. Temperature was maintained at 37°C. Capsaicin, capsazepine, ruthenium red, and 4-AP was purchased from Sigma Chemical Co. All the drugs were prepared on the day of the experiment. Stock solutions of capsaicin were prepared in ethanol and were diluted with PSS as appropriate. Capsazepine was dissolved in dimethylsulfide to a concentration of 10 mM and further diluted with PSS solution.

Statistics: Results of experiments are expressed as means ± S.E.M. Student’s t-test was used for statistical analysis of the results and the number of preparations taken from separate animals was indicated by n. P values less than 0.05 were considered to be significantly different.

RESULTS

Capsaicin-induced relaxation with or without depletion of sensory nerve ending: Capsaicin relaxed the prostaglandin (PG) F$_2$α (1 µM)-induced contraction in a concentration-dependent manner. The threshold concentration of capsaicin to induce relaxation was approx. one µM and maximum relaxation induced by capsaicin (30 µM) was 91.5 ± 1.6% of the PGF$_{2\alpha}$-induced contraction. The depletion of sensory nerve endings by prolonged treatment with a high concentration of capsaicin (100 µM) had no apparent effect on the capsaicin-induced relaxation of rabbit coronary artery. The maximum relaxation response was 91.5 ± 1.6% and 91.8 ± 1.6% with and without pretreatment with 100 µM capsaicin, respectively (n=7). In addition, repeated application of capsaicin to the same coronary ring elicited the same magnitude of relaxation. Pretreatment with capsazepine (1 µM) or ruthenium red (1 µM) did not alleviate the relaxation response to capsaicin (Fig. 1).

Capsaicin-induced relaxation in agonist- or high K$^+$-induced constriction: As shown in Fig. 2A, capsaicin produced only slight relaxation in the high K$^+$-induced contraction compared to the PGF$_{2\alpha}$-induced contraction. Capsaicin (10 µM)-induced relaxation was 14.9 ± 3.3% and 91.8 ± 1.6% in 80 mM K$^+$- and PGF$_{2\alpha}$-induced contraction, respectively (n=7). We also measured the effect of capsaicin on [Ca$^{2+}$]i. As shown in Fig. 2B, application of capsaicin (10 µM) at the plateau of the PGF$_{2\alpha}$-induced contraction significantly lowered [Ca$^{2+}$]i. However, in 70 mM K$^+$-induced contraction, capsaicin had no apparent effect on plateau level of [Ca$^{2+}$]i. Figures 2C & D show the summarized results of capsaicin-induced decrease of [Ca$^{2+}$], and contractility due to high K$^+$ and PGF$_{2\alpha}$.

Potassium channels involved in the capsaicin-induced relaxation: Because the relaxing effect of capsaicin was effectively antagonized by high extracellular K$^+$, we investigated the types of potassium channels involved in the capsaicin-induced relaxation. We first examined the effect of iberiotoxin, a specific blocker of Ca$^{2+}$-activated K$^+$ channel, on capsaicin-induced relaxation. As shown in Fig. 3A, pretreatment with iberiotoxin had no apparent effect on the capsaicin-induced relaxation. Relaxation induced by capsaicin (10 µM) was 73.2 ± 3.3% and 70.5 ± 5.1% before and after pretreatment with iberiotoxin, respectively (n=7). Pretreatment with 1 mM 4-aminopyridine (4-AP), a blocker of the delayed rectifier K$^+$ channel, significantly inhibited the relaxation due to capsaicin. Relaxation induced by capsaicin (10 µM) was 73.2 ± 3.4% and 17.5 ± 3.8% before and after pretreatment with 4-AP, respectively (n=7). Capsaicin showed a similar change in [Ca$^{2+}$], to those in contractility. As shown in Fig. 3B, pretreatment with iberiotoxin had no apparent effect on the effect of capsaicin on [Ca$^{2+}$]. However, pretreatment with 4-AP significantly attenuated the effect of capsaicin on [Ca$^{2+}$], (n=5).

DISCUSSION

Immunohistochemical investigations have revealed that neuropeptides such as CGRP and substance P are present in the cardiac C fiber afferents in a variety of species [7]. Activation of cardiac C fiber results in the release of CGRP, which induces coronary vasodilation in several animal species including rat and pig [6, 9]. Therefore, it seems likely that activation of cardiac C fiber by capsaicin may relax coronary artery by releasing CGRP. In our present studies, pretreatment with a high concentration of capsaicin, which causes a chemical desensitization of sensory nerves and renders them insensitive to further exposure to capsaicin [4, 24], did not change the relaxation responses to subsequently...
applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation

applied capsaicin. Furthermore, pretreatment with capsaicin and coronary artery relaxation
only a small effect on the capsaicin-induced coronary relaxation. However, pretreatment with 4-AP (a blocker of delayed rectifier K+ current) significantly attenuated the capsaicin-induced coronary relaxation with simultaneous attenuation of the effect of capsaicin on [Ca^{2+}]i. These results best fit the hypothesis that capsaicin relaxes the coronary artery by activating the 4-AP sensitive, delayed rectifier K+ currents in the coronary smooth muscle cells.

In summary, our present study has demonstrated that in rabbit coronary artery 1) capsaicin may have a direct relaxing effect on coronary smooth muscle cells, and 2) capsaicin can relax the coronary artery by activating the 4-AP sensitive K+ channels accompanied by the decrease intracellular Ca^{2+} concentration.

ACKNOWLEDGMENT. This work was supported by the Yonsei University Research Fund of 2000.

REFERENCES

Fig. 3. Effect of pretreatment with 4-AP and iberiotoxin on the capsaicin-induced relaxation and intracellular Ca^{2+} concentration. (A) Relaxation induced by 1, 3, and 10 µM capsaicin in the absence (open bar) and after treatment with 100 nM iberiotoxin (hatched bar) and 1 mM 4-AP (filled bar). Relaxation is expressed as a percentage of 80 mM K+ contraction. Values are expressed as mean ± SEM (n=7). (B) Summarized results of the capsaicin-induced decrease in [Ca^{2+}]i, in the pre-contracted coronary strips (control, open bar), and after treatment with 100 nM iberiotoxin (IBTX, hatched bar), and 1 mM 4-AP (4-AP, filled bar). Values are expressed as mean ± SEM (n=5). Asterisk represents P<0.01.
nin receptor subtype activation in capsaicin and KCl contractions of guinea pig trachealis. Am. J. Physiol. 269: L837–L842.