REVIEW Immunology

Host Immune Responses in the Course of Bovine Leukemia Virus Infection

Hidenori KABEYA1, Kazuhiko OHASHI2 and Misao ONUMA2

1)Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Science, Nihon University, Kameino, Fujisawa, Kanagawa 252–8510 and 2)Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060–0818, Japan

(Received 22 December 2000/Accepted 22 March 2001)

ABSTRACT. Bovine leukemia virus (BLV) is a type C retrovirus infecting bovine B cells and causing enzootic bovine leukosis. Since it takes long periods to develop the disease, it is believed that BLV and host immune responses are closely related. In this review, the accumulated data showing close relationship between BLV and host immune responses are summarized in 4 sections. First, we discuss the role of cell-mediated immunity in protecting hosts from BLV infection. Second, several reports showing the relationship between the disease progression and the change of cytokine profiles are summarized. In the third section, we have focused on tumor necrosis factor (TNFα) and its two types of receptors, and the possible involvement of TNFα in the BLV-induced leukemogenesis is discussed. The expression of TNFα has been shown to be regulated by major histocompatibility complex (MHC) haplotype. The resistance to BLV infection is supposed to be established by some innate factors, which are closely related to MHC haplotype. Finally, we propose that a breeding strategy based on the MHC haplotype could be a good approach to control BLV infection. This review includes some recent data from us and other groups.

KEY WORDS: bovine leukemia virus, cell-mediated immunity, cytokine profile, major histocompatibility complex, tumor necrosis factor α.

Bovine leukemia virus (BLV), the causative agent of enzootic bovine leukosis, is an oncogenic B-lymphotropic retrovirus [27]. The disease is divided into three stages; serologically positive, but negative for lymphocytosis (SP); serologically positive and positive for persistent lymphocytosis (PL); and leukemia. Like other members of chronic retrovirus infection, BLV infection results in a prolonged asymptomatic period with a low viral load that persists for 1 to 8 years. Thirty percent of infected animals progress to PL, characterized by a polyclonal expansion of B cells. Only 0.1 to 10 percent develop malignant lymphosarcoma [53]. Usually a long duration is required between these disease stages suggesting that BLV modulate host immune systems [22, 23].

The purpose of this review is to assemble the results of studies on the host immune responses in the course of BLV infection in an effort to provide a picture towards the control of BLV infection.

CELL-MEDIATED IMMUNITY AND BLV INFECTION

Both humoral and cell-mediated immunity (CMI) are known to be induced in natural BLV-infection, and these play roles in protection of hosts from BLV infection [20, 29, 41, 42, 45]. However, their relative roles in protection remain to be elucidated. In this regard, a series of recent studies have postulated that particularly CMI against BLV antigens contributes to the suppression of BLV replication, this leading to the delay of disease progression [42, 59]. Orlik and Splitter have shown that CMI responses to BLV antigens were suppressed in correlation to disease progression [46]. The positive effect of indomethacin on the recovery of the suppressed CMI response suggests involvement of prostaglandin E2 (PGE2) as a negative regulatory factor. PGE2 is an immunosuppressant, inhibiting interleukin (IL-) 12 production by macrophages [64], production of type 1 (IL-2 and IFN-γ) cytokines by CD4+ T cells and suppressing mitogen-induced T cell proliferation [3, 47, 64]. Thus, production of PGE2 and the change of macrophage functions contribute to the suppression of CMI responses in the disease-progressed animals. Ohishi et al. also supported the critical roles of CMI to eliminate BLV infected cells [41, 42, 59]. Recombinant vaccinia virus encoding BLV env gene (rVVenv) was constructed and injected into sheep. These sheep were challenged with BLV and the specific antibody and delayed-type hypersensitivity (DTH) responses were examined. Sheep which were immunized with rVVenv and protected from the infection showed no antibody responses but good DTH response, which is supposed to be mediated by helper T cell type 1 (Th1) [7]. In addition, statistical analysis demonstrated the relationship among BLV titers in peripheral blood mononuclear cell (PBMC) and lymphocyte proliferative responses against BLV antigens [42].

In order to prevent BLV infection or disease progression, a vaccine should be able to induce BLV-specific CMI responses. Recently, it has been reported that inactivated protein antigens with adjuvants can induce CMI including the activation of cytotoxic T lymphocyte (CTL) response [33, 51, 56, 61]. Noguchi et al. have reported that a liposome encapsulated with mman on its surface was successful to induce CTL responses against the enclosed antigens [40]. The mechanisms on how the antigens enclosed in mman coated liposome are processed, however, remain to be elucidated. Using this liposome, BLV Env-specific CMI (Th1) responses have been shown to be induced in epitope peptide immunized Balb/c mice (Fig. 1) [43, 44]. Further-
more, sheep, which were immunized with Th epitope peptide encapsulated with mannan coated liposome, significantly eliminated BLV when experimentally challenged [21].

CHANGE OF CYTOKINE PROFILES ASSOCIATED WITH DISEASE PROGRESSION OF BLV INFECTION

Alternations in cytokine expression have been shown to be correlated with disease progression in chronic retroviral infections, suggesting that cytokine imbalances may contribute to disease progressions [8, 26, 36, 62]. In case of BLV infection, similar results were reported as summarized in Table 1. Pyeon et al. examined the cytokine profiles in cattle PBMC derived from each stage of the disease and demonstrated that the production of Th1 cytokine such as IFN-γ was promoted in the PBMC from SP cattle than that of PL [49]. To the contrary, increased expression of Th2 cytokine such as IL-10 was shown in the macrophages of PL and cattle with leukemia [49]. Later, they have also reported that cattle in SP expressed much more amount of IL-12, which is a key cytokine that induces Th1 responses, though those were downregulated in cattle with progressed disease stages [50]. This finding was supported by the report by Yakobson et al., showing that IL-12 expressions were increased at the early phase of infection, while those of IL-10 were induced in the PBMC of cattle, in which BLV replicated [69]. Thus, Th1 cytokines, which play important role to induce CMI was supposed to be critical to prevent disease progression of the BLV infection.

IL-2, however, is supposed to play a role to promote disease progression in case of BLV though IL-2 is one of Th1 cytokines. Therefore, vaccination with the BLV Env epitope peptide encapsulated in mannan-coated liposome was examined to see whether Th1 cytokine responses were promoted in the PBMC of sheep experimentally challenged with BLV.

Table 1. Change of Th1 / 2 cytokine profiles in the course of BLV infection

<table>
<thead>
<tr>
<th>Th1/2</th>
<th>cytokines</th>
<th>SP(a)</th>
<th>PL(b)</th>
<th>cells tested for cytokine production</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th1</td>
<td>IFN-γ</td>
<td>↑↑</td>
<td>N.T.</td>
<td>ConA-activated PBMC</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑</td>
<td>↑</td>
<td>PBMC</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑</td>
<td>→</td>
<td>PWM-activated PBMC</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑</td>
<td>→</td>
<td>LN(c)</td>
<td>25</td>
</tr>
<tr>
<td>IL-2</td>
<td>↑</td>
<td>N.T.</td>
<td>↑</td>
<td>ConA-activated PBMC</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>PBMC</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>PWM-activated PBMC</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>LN</td>
<td>25</td>
</tr>
<tr>
<td>IL-12</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>PWM-activated PBMC</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
<td>monocytes / macrophage</td>
<td>50</td>
</tr>
<tr>
<td>Th2</td>
<td>IL-10</td>
<td>↑</td>
<td>N.T.</td>
<td>ConA-activated PBMC</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>LN</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>monocytes / macrophage</td>
<td>49</td>
</tr>
</tbody>
</table>

a) SP: Serologically positive for BLV infection but healthy.

b) PL: Persistent lymphocytosis.

d) N.T.: not tested.

e) LN: lymph node.
cytokines. It is interesting that although IL-2 is originally known as a T cell growth factor, it can promote BLV-infected B cells to proliferation [63]. In addition, IL-2 increases the expressions of viral protein and IL-2 receptor in B cells from PL cow [18, 58, 63]. These results suggest that IL-2 contribute to the development of BLV-induced persistent lymphocytosis.

TUMOR NECROSIS FACTOR α AND BLV INFECTION

Tumor necrosis factor α (TNF α) is a pleiotropic cytokine, which is involved in diverse biological processes including immune and inflammatory reactions [2]. On one hand, TNF α may play an important role to eliminate some infectious agents, such as Toxoplasma gondii and Human immunodeficiency virus [4, 6, 9, 12, 15]. On the other hand, its function may promote disease progression [13, 16, 60]. The roles of TNF α in the course of BLV infection have not been fully established. To examine how TNF α contributes to the pathogenesis of BLV infection, mRNA expressions of TNF α were analyzed before- and after-BLV infection in the experimentally challenged sheep [21]. Interestingly, the expressions of TNF α were significantly upregulated after BLV infection in sheep, which eliminated BLV infected cells, though sheep in which BLV replicated showed down-regulation of the TNF α gene expression. This result suggests that at the early phase of infection, TNF α may be involved in the elimination of BLV.

It has been reported that the susceptibilities against infectious- and autoimmune- diseases depend on the individual differences in the production of TNF α as summarized in Table 2. In case of human and mice, it has shown that the gene for TNF α is located in major histocompatibility complex (MHC) class III region, and the regulation of the gene expression is associated with its polymorphism in the promoter sequence [52, 67]. However, the more production of TNF α does not always mean the more resistant to the disease. For example, several studies have shown that the individuals who produced more TNFα against malaria infection, showed a tendency to progress to severe symptoms [28, 37]. Furthermore, TNF α is thought to be one of the cytokines, which contributes to the control of B cell death [1, 30], the virus-induced B cell proliferation [10, 13, 34], and the leukemogenesis of B-1 cells [14, 65, 66]. Conflicting activities of TNF α, including induction and suppression of apoptosis have been introduced mainly through two distinct TNF- receptors; TNF RI and TNF RII [11, 15, 17]. These two distinct membrane receptors for TNF α have significant homologies in their extracellular domains with cystein-rich sequences. Contrary to this, there is no homology between their intracellular domains, suggesting that they utilize separate signaling pathways [55]. Furthermore, flow cytometric analysis revealed that though most resting human peripheral blood B cells expressed small amounts of TNF RI, it was markedly up-regulated upon stimulation with B cell mitogen. In contrast, the expression of TNF RI was low on resting as well as on activated B cells [11]. To examine the roles of TNF α and its receptors in the development of leukemogenesis induced by BLV infection, which has been known as B cell leukemia, we analyzed mRNA expressions of TNF α and its receptors in PBMC of BLV-challenged sheep. As summarized in Table 3, the mRNA expression of TNF RI was specifically downregulated in sheep showing PL. Furthermore, we found that no TNF RI mRNA were expressed in KU-1, which is a bovine B cell line transformed by BLV. It is important to examine what caused the downregulation of the level of TNF RI expressions, and whether this was specific to BLV-infected cells. The change of TNF RI/RII expression patterns has also been shown in other B cell leukemia cases including chronic lymphocyte leukemia and Burkitt lymphoma, and these consequences for the proliferative effects of TNF α [13, 65]. Then, we examined the proliferative responses of these sheep PBMC against TNF α stimulation. No proliferative responses were detected from the healthy sheep. However,
PBMC from PL sheep showed proliferative responses against TNFα stimulation in a dose-dependent manner. These results indicate that TNFα can induce lymphocyte proliferation in the BLV-infected PL sheep, in which expressions of TNF RI were downregulated. TNFα proliferation in the BLV-infected PL sheep, in which expression is supposed to contribute to leukemogenesis caused by BLV infection.

A hypothesis of the correlation between TNFα and pathogenesis of BLV infection is summarized in Fig. 2. At the early phase of infection, B cells infected with BLV express more amount of RI than RII. When the cells are stimulated by TNFα, apoptosis may be introduced and consequently BLV-infected cells will be cleared. Then, as a result of some changes, which may include the change of cytokine profiles [49, 50], some of the infected animals develop PL. In this stage, PBMC express much more amount of RII than RI and the stimulation of TNFα may induce lymphocyte proliferation and this cause leukemia development. Thus, TNFα and its receptors may play important roles in the pathogenesis of BLV infection.

BLV-RESISTANT ANIMAL

As mentioned in introduction, BLV-infected animals can be divided into 3 stages [53]. Recently, several reports showing the resistance to BLV infection is immately established by MHC have been accumulated [31, 32, 39, 57, 68]. Xu et al. demonstrated that there was significant difference between PL and healthy group in the amino acids sequence in the DRB3 region of bovine leukocyte antigen (BoLA) class II [68]. It has also shown that polymorphism in the MHC class II associated with disease resistance against experimental BLV infection. Nagaoka et al. analyzed statistically the sequence of ovine leukocyte antigen (OLA) class II region of the experimentally BLV-challenged sheep and found that the amino acids sequences at position 70 and 71 of OLA-DRB1 were statistically different between healthy and PL group sheep [39].

The disease causes significant economic problems in the dairy industry. For the purpose of classifying the bovine MHC allele, PCR-RFLP technique has been developed and this technique was applied to determine the disease resistance of BLV infection [68]. It is expected that the breeding strategy based on the MHC haplotype could be developed to produce BLV-resistant animals.

REFERENCES

14. Heilig, B., Mapara, M., Brockhaus, M., Krauth, K. and Dorken,

46. Orlik, O. and Splitter, G.A. 1996. Progression to persistent
48. Pociot, F., Briant, L., Jongeneel, C.V., Molvig, J., Worsaae, H.,
54. Seki, N., Yamaguchi, K., Yamada, A., Kamizono, S., Sugita,
56. Srivastava, P.K., Menoret, A., Basu, S., Binder, R.J. and
45. Onuma, M., Hodatsu, T., Yamamoto, S., Higashihara, M.,
52. Santamaria, P., Gehrz, R.C., Bryan, M.K. and Barbosa, J.J.
57. Stear, M.J., Dimmock, C.K., Newman, M.J. and Nicholas,
59. Sugimoto, M., Ohishi, K. and Ikawa, Y. 1994. Role of cell-
63. Trueblood, E.S., Brown, W.C., Palmer, G.H., Davis, W.C.,
40. Orlik, O. and Splitter, G.A. 1996. Progression to persistent
41. Onuma, M., Hodatsu, T., Yamamoto, S., Higashihara, M.,
40. Orlik, O. and Splitter, G.A. 1996. Progression to persistent
41. Onuma, M., Hodatsu, T., Yamamoto, S., Higashihara, M.,
40. Orlik, O. and Splitter, G.A. 1996. Progression to persistent
41. Onuma, M., Hodatsu, T., Yamamoto, S., Higashihara, M.,
40. Orlik, O. and Splitter, G.A. 1996. Progression to persistent
41. Onuma, M., Hodatsu, T., Yamamoto, S., Higashihara, M.,
40. Orlik, O. and Splitter, G.A. 1996. Progression to persistent
41. Onuma, M., Hodatsu, T., Yamamoto, S., Higashihara, M.,
40. Orlik, O. and Splitter, G.A. 1996. Progression to persistent
41. Onuma, M., Hodatsu, T., Yamamoto, S., Higashihara, M.,
40. Orlik, O. and Splitter, G.A. 1996. Progression to persistent
41. Onuma, M., Hodatsu, T., Yamamoto, S., Higashihara, M.,