Vascular Endothelial Growth Factor (VEGF) Promotes the Early Development of Bovine Embryo in the Presence of Cumulus Cells

Hailing LUO1,2, Koji KIMURA2, Mari AOKI3 and Makoto HIRAKO2*

1Department of Animal Production, College of Animal Science and Technology, China Agricultural University, Beijing 100094, China
2Department of Animal Breeding and Reproduction, National Institute of Livestock and Grassland Science, Nishinasuno, Tochigi 329–2793, Japan

(Received 18 December 2001/Accepted 8 July 2002)

ABSTRACT. Three experiments were conducted to determine the effect of Vascular Endothelial Growth Factor (VEGF) on bovine embryonic development in vitro. Human recombinant VEGF165 was employed at 5 ng/ml in modified synthetic oviduct fluid. In Exp. 1, bovine cumulus oocyte complexes were matured with or without VEGF for 22 hr, inseminated without VEGF for 6 hr, then cultured with or without VEGF for 42 hr. The cleavage rate and the development rate to 4- to 8-cell were higher (P<0.05) in groups with VEGF during in vitro maturation (IVM, 71.4% and 59.6%), in vitro culture (IVC, 70.3% and 62.3%), and both IVM and IVC (75.9% and 67.8%) than in the group cultured throughout without VEGF (49.9% and 38.4%, respectively). In Exp. 2, 4- to 8-cell embryos produced in vitro without VEGF were removed from cumulus cells at 48 hr post-insemination (PI) and cultured with or without VEGF for 144 hr. The developmental rates to blastocyst at 96 hr (D6), 120 hr (D7) and 144 hr (D8) were similar (P>0.05) in both groups. In Exp. 3, cumulus cells were removed from presumptive embryos produced by IVM and IVF without VEGF at 10 hr PI. Denuded embryos were cultured with or without VEGF for 38 hr or 182 hr. The cleavage rate and the development rates to 4- to 8-cell at 48 hr PI and to blastocyst on D6, D7 and D8 were similar (P>0.05) in all groups. These results suggest that VEGF has a beneficial effect on the initial development of bovine embryo through surrounding cumulus cells.

KEY WORDS: bovine embryo, cumulus cell, in vitro development, VEGF.

Bovine oocyte matures at the time of pre-ovulatory gonadotropin surge in vivo [4], but maturation of oocyte depends on interaction of many factors. Although gonadotropin is the primary regulator of nuclear maturation in mammalian oocyte in vivo [19], many reports imply that gonadotropin is only one in a complex sequence of factors that appear to regulate oocyte maturation and embryonic development. The oviduct provides optimal microenvironments for fertilization of gametes and the development of zygote. The oviducal fluid includes various proteins and growth factors [11], which influence sperm capacitation, final oocyte maturation, fertilization and early embryonic development. However, the composition and the amount of fluid produced by bovine oviduct change depending on the stage of estrous cycle [12]. Expression of growth promoting factors secreted by the oviduct, such as Epidermal Growth Factor (EGF), Fibroblast Growth Factor (FGF), Transforming Growth Factor (TGF) β1 and Vascular Endothelial Growth Factor (VEGF) differs in animal species [10, 13]. VEGF is known as a potent mitogen for vascular endothelial cells [6, 18] and as a stimulator of vascular permeability [3]. Expression of VEGF is mainly correlated with the vascularization of tissues [21]. In the female reproductive system, it is essential for the development of follicle and corpus luteum as well as the establishment of the placenta [7]. In cattle, VEGF transcripts continuously increase in granulosa cells accompanied with follicular development [5] and it shows a beneficial effect on maturation of oocyte in vitro [20]. VEGF is also involved in creating optimal local environments for fertilization and the development of bovine embryo by modulating permeability within oviduct [9, 10]. However, the roles of VEGF on bovine oocyte maturation and early embryonic development is elucidated very little.

In our previous study, it was demonstrated that recombinant human VEGF165 improved maturation, normal fertilization and subsequent development of bovine oocytes cultured with cumulus cells [20]. However, it has not been determined whether VEGF influences directly to the oocyte or indirectly via cumulus cells. Therefore, the objectives of the present study were to examine whether VEGF was involved in the early development of bovine embryo without oviduct and to determine whether the effect of VEGF was directly on the embryo or indirectly through surrounding cumulus cells.

MATERIALS AND METHODS

Reagents: Human recombinant VEGF165 derived from SF 21 insect cells was obtained from R&D systems (Minneapolis, MN, U.S.A.) and utilized at 5 ng/ml. For in vitro culture of bovine oocyte and embryo, synthetic oviduct fluid (SOF) [24] was supplemented with 1% basal medium Eagle-essential amino acid (BME-EAA, Sigma B-6766, St. Louis, MO, U.S.A.), 1% minimum essential medium -non-essential amino acid (MEM-NEAA, Sigma M-7145), 5 mM taurine (Sigma T-7146), 0.5 mM pyruvic acid (Sigma P-
RESULTS

In Exp. 1, a total of 690 oocytes were examined in 9 replicates. As shown in Table 1, CR and IDR1 were higher (P<0.05) in groups with VEGF during IVM (71.4% and 59.6%), IVC (70.3% and 62.3%), and both IVM and IVC (75.9% and 67.8%) than those in the group cultured thoroughly without VEGF (49.9% and 38.4%, respectively). The highest CR (75.9%), IDR1 (67.8%) and IDR2 (90.0%) were obtained from the group that VEGF was added to culture medium as well as to maturation medium significantly increased CR (P<0.05 and P<0.01, respectively) and IDR1 (P<0.001 and P<0.005, respectively), whereas no significant interaction was detected between the effects of VEGF during maturation and culture as indicated in Table 2 (P>0.05). Furthermore, supplementation of m-SOF with VEGF significantly (P<0.01) raised IDR2 during IVC but not during IVM (P=0.36, Table 2).

As shown in Table 3, 241 of 4- to 8-cell bovine embryos that obtained from IVM, IVF and IVC until 48 hr Pi or thoroughly IVC until D8 as shown in

In Exp. 2 and 3, differences were considered to be significant at P < 0.05.

In vitro culture (IVC): The presumptive embryos were washed 3 to 4 times with m-SOF supplemented with 1% FBS at 6 hr post-insemination (Pi), then placed each 20±2 to 100 µl fertilization droplets of the same medium under paraffin oil at 39°C in an atmosphere of 5% CO2 in air.

In vitro maturation (IVM): Bovine oocytes were obtained at a local abattoir and transported to the laboratory in physiological saline (30–35°C) within 5 hr. Follicular contents were aspirated from small antral follicles (2–5 mm) using a 20-gauge needle attached to a 10 ml disposable syringe, then allowed to settle in a Petri dish and the supernatant was discarded. Only cumulus oocyte complexes (COCs) with multilayered compact cumulus cells were selected for maturation in vitro. The COCs were washed 3 times with m-SOF containing 10% Fetal Bovine Serum (FBS, ICN Biomedicals, Inc., 29–167–54, Aurora, OH, U.S.A.), 1.5 mM glucose (Dextrose anhydrous, Wako Pure Chemical Industries, Osaka, Japan), 2 µg/ml Follicle Stimulating Hormone (FSH, Antrin, Denka Pharmacetical, Kawasaki, Japan), 2 µg/ml estradiol-17β (Sigma E-1127). Groups of 20±2 COCs were matured in 100 µl droplets of the same medium under paraffin oil for 22 hr at 39°C in an atmosphere of 5% CO2 in air.

In vitro fertilization (IVF): Maturated COCs were washed 3 to 4 times with BO medium and transferred each 20±2 to 100 µl fertilization droplets of the same medium under paraffin oil. For the capacitation of spermatozoa, frozen-thawed (37°C) Japanese Black semen was layered on 45% and 60% discontinuous Percoll (Amersham Pharmacia Biotech AB, Piscataway, NJ) gradient BO medium and centrifuged 15 min at 800×g, 37°C. The sperms were diluted at a final concentration of 5×105 sperms/ml. Gametes were incubated together 6 hr in the BO medium under paraffin oil at 39°C in an atmosphere of 5% CO2 in air.

Exp. 1. Effect of VEGF on the initial development of bovine embryo: Bovine COCs were matured with or without VEGF, inseminated without VEGF, then cultured with or without VEGF for 42 hr. The effect of VEGF on the initial development of bovine embryo was assessed by the cleavage rate (CR, No. of ≥2-cell embryos/No. of oocytes), the initial development rate 1 (IDR1, No. of ≥4- to 8-cell embryos/No. of oocytes) and the initial development rate 2 (IDR2, No. of ≥4- to 8-cell embryos/No. of ≥2-cell embryos) at 48 hr Pi.

Exp. 2. Effect of VEGF on the further development of bovine embryo: Bovine COCs were matured, inseminated and cultured without VEGF. Only 4- to 8-cell stage embryos were selected at 48 hr Pi, removed from surrounding cumulus cells and cultured in 5% FBS-m-SOF supplemented with or without VEGF for 144 hr. The effect of VEGF on the further development of bovine embryo was assessed by the development rate to the blastocyst stage at 144 hr (D6), 168 hr (D7) and 192 hr (D8) Pi.

Exp. 3. Effect of VEGF on the development of bovine embryo thoroughly without cumulus cells: The cumulus cells were removed from presumptive bovine embryos produced by IVM and IVF without VEGF at 10 hr Pi using 0.1% hyaluronidase (Sigma H-3506). The denuded embryos were cultured in 1% FBS-m-SOF supplemented with or without VEGF for 38 hr, then cultured in 5% FBS-m-SOF with or without VEGF for 144 hr. The effect of VEGF on the development of naked bovine embryo was evaluated with CR, IDR1 and IDR2 at 48 hr Pi and the blastocyst rates on D6, D7 and D8.

Statistical analysis: Data were presented as percentages or means with standard errors. Repeated measures two-way analysis of variance (ANOVA) was carried out in Exp. 1, and repeated measures one-way ANOVA was carried out in Exp. 2 and 3. Differences were considered to be significant at P<0.05.
DISCUSSION

Oocyte maturation and embryonic development occur in response to an ever-changing milieu of gonadotropins, growth factors, steroids, factors secreted by the oocyte or embryo itself and other unknown molecules [2]. Furthermore, there are synergistic effects of factors on those processes. Some studies on synergistic effects of growth factors have been attempted in bovine embryos, such as EGF and TGFβ1 [15], FGF and TGFβ1 [16], Insulin-like Growth Factor-I and Platelet Derived Growth Factor [16], and EGF and FGF [17]. Gabler et al. [9] suggested that VEGF might be involved in fertilization and/or early embryonic development by modulating permeability within bovine oviduct. However, far from synergistic effects with other factors, very little is known to date about the effects of VEGF on oocyte maturation and early embryonic development in any species.

The results of the present study indicated that 5 ng/ml of VEGF added to maturation medium significantly (P<0.01) increased the cleavage rate of bovine embryos.

Table 1. The effect of VEGF on the initial development of IVM/IVF bovine embryo

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. of oocytes examined (n)</th>
<th>No. of embryos</th>
<th>CR (± SE)</th>
<th>IDR1 (± SE)</th>
<th>IDR2 (± SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>– – –</td>
<td>174 (9)</td>
<td>87</td>
<td>49.9 ± 3.9</td>
<td>38.4 ± 2.4</td>
<td>77.1 ± 3.9</td>
</tr>
<tr>
<td>– +</td>
<td>175 (9)</td>
<td>123</td>
<td>70.3 ± 5.8</td>
<td>62.3 ± 5.3</td>
<td>88.9 ± 2.9</td>
</tr>
<tr>
<td>+ –</td>
<td>170 (9)</td>
<td>121</td>
<td>71.4 ± 4.7</td>
<td>59.6 ± 5.2</td>
<td>83.5 ± 2.2</td>
</tr>
<tr>
<td>+ +</td>
<td>171 (9)</td>
<td>130</td>
<td>75.9 ± 4.8</td>
<td>67.8 ± 3.8</td>
<td>90.0 ± 2.2</td>
</tr>
</tbody>
</table>

M: IVM; F: IVF; C: IVC until 48 hr Pi.

n: Number of replicates.

CR: Cleavage rate; IDR1: Initial development rate 1 (Number of embryos ≥ 4- to 8-cell / Number of oocytes); IDR2: Initial development rate 2 (Number of embryos ≥ 2- to 8-cell / Number of embryos ≥ 2 cell).

+ : supplemented with 5 ng/ml VEGF; – : without VEGF.

Table 2. Significance (P value) in statistical analyses on Table 1 by two-way ANOVA

<table>
<thead>
<tr>
<th>Maturation a)</th>
<th>CR p-value</th>
<th>IDR1 p-value</th>
<th>IDR2 p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culture b)</td>
<td>0.015</td>
<td>0.0008</td>
<td>0.0041</td>
</tr>
</tbody>
</table>

a) Effect of VEGF added to m-SOF during IVM.
b) Effect of VEGF added to m-SOF during IVC until 48 hr Pi.

Table 3. The effect of VEGF on the development of 4 to 8 cell bovine embryo produced in vitro

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. of ≥4 to 8-cell embryos examined (n)</th>
<th>No. (%±SE) of blastocysts</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>121 (6)</td>
<td>38 (31.6 ± 4.7)a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58 (47.8 ± 5.8)a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>69 (57.0 ± 7.0)a</td>
</tr>
<tr>
<td>+</td>
<td>120 (6)</td>
<td>46 (38.9 ± 5.8)a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57 (47.9 ± 5.3)a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>62 (52.2 ± 6.3)a</td>
</tr>
</tbody>
</table>

n: Number of replicates; hr: hours Pi.

+ : cultured with VEGF following the removal of cumulus cells at 48 hr Pi; – : without VEGF.

a) No significant difference was detected between values in the same column (P>0.05).

Table 4. The effect of VEGF on the early development of bovine embryos without cumulus cells

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. of oocytes examined (n)</th>
<th>Development to ≥2 cells</th>
<th>Development to ≥4- to 8-cells</th>
<th>Development to blastocyst at 144 hr (D6)</th>
<th>168 hr (D7)</th>
<th>192 hr (D8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>– –</td>
<td>116 (6)</td>
<td>90 (77.4 ± 5.6)a</td>
<td>76 (65.3 ± 5.4)a</td>
<td>37 (32.0 ± 5.1)a</td>
<td>51 (43.8 ± 7.5)a</td>
<td>61 (52.3 ± 6.5)a</td>
</tr>
<tr>
<td>+ –</td>
<td>117 (6)</td>
<td>88 (75.2 ± 5.2)a</td>
<td>74 (63.0 ± 7.5)a</td>
<td>29 (24.9 ± 7.2)a</td>
<td>44 (37.5 ± 7.2)a</td>
<td>49 (41.7 ± 7.0)a</td>
</tr>
<tr>
<td>+ +</td>
<td>115 (6)</td>
<td>86 (74.6 ± 6.9)a</td>
<td>76 (66.1 ± 6.7)a</td>
<td>26 (22.5 ± 2.8)a</td>
<td>38 (33.1 ± 3.5)a</td>
<td>43 (37.4 ± 4.4)a</td>
</tr>
</tbody>
</table>

* Bovine oocytes were matured and fertilized in vitro without VEGF and surrounding cumulus cells were removed from presumptive embryos at 10 hr Pi.

n: Number of replicates; hr: hours Pi.

C1: IVC1 (in vitro culture until 48 hr Pi following the removal of cumulus cells); C2: IVC2 (in vitro culture after 48 hr Pi).

+ : cultured in m-SOF supplemented with 5 ng/ml VEGF; – : without VEGF.

a) No significant difference was detected between values in the same column (P>0.05).
oocytes (CR) and the development rate to the 4- to 8-cell stage (IDR1) when the oocytes were cultured with surrounding cumulus cells as COCs. These are consistent with the results in our previous study [20] and suggest that VEGF has a beneficial effect on maturation of bovine oocyte. Normal fertilization rate of oocytes matured in vitro was lower than that in vivo [25], which was thought to be caused by incomplete cytoplasmic maturation in vitro [8]. VEGF supplementation to maturation medium significantly (P<0.01) improved the subsequent development rate of presumptive embryos produced by IVM and IVF in this study (Exp. 1). This result suggests that VEGF induces balanced cytoplasmic and nuclear maturation in vitro.

As shown in Tables 1 and 2, VEGF added to culture medium also increased CR (P<0.05) and IDR1 (P<0.001) if the presumptive embryos were cultured with cumulus cells. In addition, VEGF supplementation during culture significantly (P<0.01) elevated the development rate of 2-cell embryos to the 4- to 8-cell stage (IDR2), whereas addition of VEGF to maturation medium did not affect IDR2 (P=0.36). These results suggest that VEGF is effective for early embryonic development as well as oocyte maturation in cattle. However, VEGF did not affect the development of 4- to 8-cell bovine embryos to blastocyst without cumulus cells in Exp. 2. Similarly, VEGF supplementation to culture medium had no effect on the development of bovine embryo in IVC following the removal of cumulus cells at 10 hr Pt in Exp. 3. These results imply that the promoting effect of VEGF on the development of bovine embryo comes out through cumulus cells.

In cattle, EGF stimulates germinal vesicle breakdown (GVBD) in COC [19] and the development of embryo to the blastocyst stage [14]. However, it promotes neither GVBD of cumulus-free oocyte [22] nor the development of embryo without feeder cells [23]. Similarly in this study, VEGF showed a beneficial effect on the development of bovine embryo cultured with cumulus cells (Exp. 1), but it had no effect on the development of cumulus-free bovine embryo (Exp. 3). This would appear that the effect of VEGF on the early development of bovine embryo is brought through the same pathway as EGF suggested by Im and Park [14]. The relation between the effects of EGF and VEGF on cumulus cells has not been determined, however.

Oxygen shortage in follicular fluid induces VEGF transcription in bovine granulosa cells [5]. Besides, VEGF receptors have been found on the surface of bovine granulosa cells [5] but not in the oocyte yet. Those findings suggest that VEGF has an autocrine regulation system in a bovine follicle and stimulates cumulus cells to regulate oxygen supply to the oocyte. We hypothesize that VEGF produced by cumulus cells may be insufficient for regulating the local environment around bovine oocyte and embryo in vitro, because the number of cells supporting the oocyte and the embryo is fewer in vitro than in vivo. Consequently, VEGF supplementation to maturation and culture media increased the rate of bovine oocyte maturation and embryonic development in vitro in this study.

In conclusion, VEGF enhances bovine early embryonic development as well as oocyte maturation in vitro. It is suggested that the beneficial effect of VEGF is brought to the embryo through surrounding cumulus cells.

REFERENCES
17. Lee, E. S. and Fuku, Y. 1995. Effects of various growth factors in defined culture medium on in vitro development of bovine embryos matured and fertilized in vitro. Theriogenology...
ogy 44: 71–83.