Characteristics of the 16S-23S rRNA Intergenic Spacer Region of Mycoplasma haemomuris, Previously Classified as ‘Haemobartonella muris’

Ryô HARASAWA1, Makoto KAWAHARA2 and Yasuko RIKIHISA3

1Animal Center for Biomedical Research, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113–0033, 2Nagoya City Public Health Research Institute, Nagoya 467–8615, Japan and 3Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1925 Coffey Road, Columbus, Ohio 43210, U.S.A.

(Received 18 April 2002/Accepted 29 August 2002)

ABSTRACT. The intergenic spacer region between the 16S and 23S rRNA genes of Mycoplasma haemomuris, previously classified as ‘Haemobartonella muris’, was amplified by PCR and sequenced for analysis of the primary and secondary structures of the RNA transcript. The spacer region consisted of 219 base-pairs and lacked the spacer tRNA gene. A hypothetical secondary structure predicted in the RNA transcript of the spacer region was tentatively assigned.

NOTE. Bacteriology

‘Haemobartonella muris’, an uncultivable haemotrophic bacterial species which infects murine erythrocytes, has long been recognized as a member of the order Rickettsiales [8]. It was, however, more than 35 years ago that ‘H. muris’ was found to be cell wall-less and indistinguishable from mycoplasmas [19]. Phylogenetic analyses based on the 16S rRNA sequence revealed that ‘H. muris’, ‘H. felis’ and ‘Eperythrozoon suis’ are closely related to Mycoplasma species [15]. Similarly, ‘E. wenyonii’ was found to be genetically close to the genus Mycoplasma [13]. Therefore, it was recently proposed that the two genera, ‘Haemobartonella’ and ‘Eperythrozoon’, be transferred to the genus Mycoplasma [11,12]. To date no additional genetic comparison except for the 16S rRNA sequence analysis has been made between M. haemomuris (synonym of ‘H. muris’) and other species of Mycoplasma. The members of the class Mollicutes have only one or two operons for the rRNA genes [1]. The genes coding for RNA molecules of the genus Mycoplasma are organized in operons and arranged in the order of 5’–16S–23S–5S–3’, in which the individual rRNA genes are separated by internal transcribed spacer (ITS) regions [14]. The ITS region between the 16S and 23S rRNA genes of mycoplasmas has been shown to lack tRNA genes and to be variable in sequence and length depending on the Mycoplasma species [22]. Besides, the ITS region between the 16S and 23S rRNA genes has been used as a genetic marker for comparing phylogenetic relationships of genetically closely related species among not only the mycoplasmas [4, 7, 18], but also other bacterial species [2, 6, 9, 20]. Therefore, analyses of the ITS region may provide useful information for defining the genealogical position of the species of M. haemomuris.

In the present study, we sequenced and analyzed the ITS region between the 16S and 23S rRNA genes of M. haemomuris and compared it with those of genealogically related Mycoplasma species.

Bacterial genome DNA was isolated from the spleen cells of mice infected with M. haemomuris strain Shizuka. PCR amplification of the isolated DNA was carried out at 94°C for 30 sec, 55°C for 2 min, and 72°C for 2 min for 30 cycles using forward (5’-ACACCATGGGAGYTGGTAAT-3’) and reverse (5’-CTTTWTCGACTTYCAGACCCAAG GCAT-3’) primers as described previously [3]. A single band of approximately 250 bp was observed for the PCR products in agarose gel electrophoresis. The PCR product was then subjected to direct sequencing by the di-deoxynucleotide chain-termination method [16]. The nucleotide sequence determined in this study has been deposited in the DDBJ, EMBL, GSDB, and NCBI nucleotide sequence databases under the accession number AB080799.

The nucleotide sequence of the 16S-23S rRNA ITS of M. haemomuris was compared with those of other Mycoplasma species. The Mycoplasma species have been clustered into five groups according to the 16S rRNA sequences [23]. Five species, M. hominis, M. arginini, M. salivarium, M. arthritidis and M. orale, have been included in the M. hominis group. Mycoplasma pneumoniae, M. fermentans and M. mycoides subsp. mycoides represent the M. pneumoniae, M. fermentans and M. mycoides groups, respectively. Mycoplasma hyorhinis and M. neurolyticum are from the M. hyorhinis group. Three murine Mycoplasma species, M. pulmonis, M. arthritidis and M. neurolyticum, were included in this analysis, since M. haemomuris is also a murine isolate. Ureaplasma cati was included as an out group for phylogenetic analysis. The ITS of M. haemomuris was found to be 219 nucleotides. This sequence was aligned with those of the eleven Mycoplasma species (Fig. 1). Genealogical relatedness between M. haemomuris and other mycoplasmas was obtained by the neighbor-joining method [17]. The tree analysis suggests a monophyletic relationship between M. pneumoniae and M. haemomuris (Fig. 2). We examined the secondary structure of the ITS of M. haemomuris. Computer analysis indicated a hypothetical secondary structure of RNA transcript of the ITS region of M.
Tentative boxA and boxB loci [5] were assigned to the secondary structure. The boxA and boxB, originally found at upstream regions of the nut site of the lambda phage genome, are considered to be the ρ-independent terminators [10]. The function of these sequences remains to be determined. No spacer tRNA gene was found within the ITS, and this is a common feature with those of the other species of the genus *Mycoplasma* [22].

In conclusion, the ITS of *M. haemomuris* lacked spacer tRNA genes and had boxA and boxB loci which are common features of the *Mycoplasma* genome. Phylogenetic analysis indicated a monophyletic relationship between *M. haemomuris* and *M. pneumoniae*. These findings on *M. haemomuris* also support its classification as a member of the genus *Mycoplasma*.

ACKNOWLEDGEMENTS. We thank Prof. Hiroshi Nagatomo of the Faculty of Agriculture, Miyazaki University, for critical reading of the manuscript and for valuable comments.
Fig. 2. Phylogenetic tree based on the ITS comparison, suggesting a monophyletic relationship between M. haemomuris and M. pneumoniae among the twelve Mycoplasma species examined. Evolutionary distances were computed with CLUSTAL W [21] using the neighbor-joining method [16]. Numbers at the relevant branches refer to the values of boot-strapping analysis of 1,000 replications. Scale bar indicates the evolutionary distance value of 0.1 (ca. 10-nucleotide substitutions per 100 nucleotides). M. mycoides* represents M. mycoides subsp. mycoides.

Fig. 3. Computed secondary structure for the ITS of M. haemomuris. Box A and box B loci are indicated in the figure. Canonical base-pairing is hyphened, and uncanonical base-pairing is shown by asterisks.
REFERENCES