High Genetic Stability of TM1 and TM2 Strains of Subtype B Feline Immunodeficiency Virus in Long-Term Infection

Yasuhiro IKEDA1,6, Takayuki MIYAZAWA2,4,6, Yorihiro NISHIMURA5, Kazuya NAKAMURA2, Yukinobu TOHYA1 and Takeshi MIKAMI1,3

1Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113–8657, 2Department of Veterinary Public Health, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080–8555, 3Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource, Nihon University, Fujisawa, Kanagawa 252–0813, 4Host and Defense, PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332–0012, 5Department of Virology II, National Institute of Infectious Diseases, Gakuen 4–7–1 Musashimurayama, Tokyo 208–0011, Japan and 6Department of Immunology and Molecular Pathology, Windeseyr Institute of Medical Sciences, University College London, London W1T 4JF, UK.

(Received 27 May 2003/Accepted 15 October 2003)

ABSTRACT. To know the genetic changes of feline immunodeficiency virus (FIV) in long-term infection in cats, we inoculated three specific pathogen-free cats with FIV isolates and determined a partial env sequence covering the V3-V5 region. In 2 cats infected with subtype B strains TM1 and TM2, only one amino acid change in region V3 was observed at 9 years post infection (y.p.i.), and no nucleotide substitutions were observed between 9 and 10 y.p.i., indicating that these strains are genetically stable. On the other hand, in a cat infected with subtype A strain Petaluma at 8.7 y.p.i., 3 nucleotide insertions (one amino acid insertion) in region V5, and 1 synonymous nucleotide substitution and 2 non-synonymous nucleotide substitutions in region V5, were observed.

KEY WORDS: FIV, mutation, subtype.

A hallmark of human immunodeficiency virus (HIV) infection is the rapid generation and turnover of viral variants, resulting in a high degree of sequence diversity within and between infected individuals [14]. Immune surveillance [15] and viral cell tropism [10] are examples of plausible selective forces that may be shaping HIV diversity in vivo.

Feline immunodeficiency virus (FIV) infection in cats is an important animal model for lentiviral vaccine development and antiviral therapy since FIV causes selective loss of the CD4+ T cell subset and acquired immunodeficiency syndrome (AIDS) in naturally infected host species [2]. Similar to HIV, FIV has considerable sequence variation in the env gene, and the third to fifth variable regions (V3 to V5) of env contain an immunodominant neutralization domain and a determinant of cell tropism [3, 12, 13]. Based on the sequence diversity in V3 to V5, FIV isolates have been classified into 5 subtypes, A to E [8, 11]. In the present study, we estimated the mutation rates of the V3-V5 region in long-term infections of over 8 years duration. Our results showed remarkable genetic stability among subtype B FIV isolates in cats.

Three specific pathogen-free (SPF) cats aged 5.5 months were injected intraperitoneally with primary peripheral blood mononuclear cells (PBMCs) infected with the FIV subtype A strain Petaluma (Cat 105) which was isolated from a cat with an immunodeficiency-like disease [9], or 0.5 ml of the peripheral blood of cats naturally infected with subtype B strains TM1 and TM2 (Cats 103 and 104, respectively) [7]. These cats were kept separately in isolation units during the experiment. As we reported previously [6], Cat 105 died from immunodeficiency-like diseases with remarkable a decrease in the CD4/CD8 ratio at 8 years and 8 months after infection. FIV was isolated from Cats 103, 104 and 105 all through the experimental period.

PBMCs were isolated from Cats 103 and 104 at 3 weeks post infection (w.p.i.) and 9 and 10 years p.i. (y.p.i.). PBMCs of Cat 105 were isolated at 3 w.p.i. and 8.7 y.p.i., a week before the death. The isolated PBMCs were stored in liquid nitrogen until the genomic DNA was isolated. For sequencing analyses, total cellular DNA was extracted from the PBMCs with a QIAamp blood kit (QIAGEN, Hilden, Germany) and the part of the env gene encompassing the region from V3 to V5 was amplified using the primers HV3f and HV5r and subjected to direct sequencing analysis as described previously [8]. Three independent PCR amplifications were carried out for each of the DNA templates. Each PCR amplification yielded identical results.

The 627 bp nucleotide sequence covering the V3-V5 region from each of the cats was determined and the three were compared. In Cats 103 and 104, no synonymous but non-synonymous substitutions were observed (Fig. 1). The amino acid changes in both cats were located in region V3 at 9 y.p.i. The sequences from Cats 103 and 104 at 10 y.p.i. revealed no nucleotide substitutions between 9 and 10 y.p.i. On the other hand, 3 nucleotide insertions and 3 nucleotide substitutions were observed in Cat 105 at 8.7 y.p.i. One nucleotide change between V3 and V4 was a synonymous substitution, but the others resulted in two amino acid sub-

NOTE Virology

As we reported previously [7], peripheral blood samples from domestic cats naturally infected with FIV strains TM1 and TM2 were used to directly inoculate SPF Cats 103 and 104, respectively. Although we had expected to find a high degree of mutation through long term infection, only one non-synonymous substitution was observed in the V3-V5 region in both Cats 103 and 104 at 10 y.p.i., suggesting remarkable genetic stability among the viruses in vivo.

Balfe et al. [1] examined a cohort of hemophiliacs who were infected with the same source of HIV type 1 (HIV-1) and estimated the mutation rate of the sequence to be 0.4% nucleotide substitutions per site per year in the V4-V5 region and 0.5% per year in the V3 region. Greene et al. [4] reported that the rate of mutation in the V1-V2 env region of a subtype A FIV isolate was 0.34% per year, which is comparable to that of HIV-1. However, in the present study, the mutation rates of both TM1 and TM2 (subtype B) were estimated to be only 0.015% per year. The nucleotide mutation rate of strain Petaluma (subtype A) (0.11% per year) was about six times that of TM strains. Cat 105 developed an AIDS-like disease 8 years after infection, whereas both Cats 103 and 104 remained asymptomatic for over 10 years, suggesting a correlation between disease progression and nucleotide substitution rates. The low genetic diversity rates may, in part, be ascribed to the long term non-progression without viremia in the infected cats even at 8 years post-infection [6]. Although it is still unknown whether this genetic stability of the strains is subtype-specific, it is of note that subtype B isolates are considered to be more host-adapted than subtype A isolates [11], leading to higher genetic stability in cats.

In conclusion, we found the mutational rates of the subtype B isolates, TM1 and TM2 strains, to be lower than expected. Because of their genetic stability and low virulence, modified TM2-type viruses [5] might be a good candidate for an attenuated live vaccine against FIV.

ACKNOWLEDGEMENTS. This study was partly supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan and Host and Defense, PRESTO, Japan Science and Technology Agency (JST). M. Shimojima, Y. Nishimura, and K. Nakamura are supported by a fellowship from Japan Society for the Promotion of Science.

REFERENCES