Assessment of Left Ventricular Function Using Pulsed Tissue Doppler Imaging in Healthy Dogs and Dogs with Spontaneous Mitral Regurgitation

Kenji TESHIMA1, Kazushi ASANO1*, Yukie SASAKI1, Yuka KATO1, Kenji KUTARA1, Kazuya EDAMURA1, Atsuhiko HASEGAWA2 and Shigeo TANAKA1

1)Laboratories of Veterinary Surgery and 2)Veterinary Pathobiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa 252–8510, Japan.

(Received 1 June 2005/Accepted 10 August 2005)

ABSTRACT. Pulsed tissue Doppler imaging (pulsed TDI) has been demonstrated to be useful for the estimation of left ventricular (LV) systolic and diastolic functions in various human cardiac diseases. The objectives of this study were to investigate the relationship between pulsed TDI and LV function by using cardiac catheterization in healthy dogs and to evaluate the clinical usefulness of pulsed TDI in dogs with spontaneous mitral regurgitation (MR). The peak early diastolic velocity (E'), peak atrial systolic velocity (A'), and peak systolic velocity (S') were detectable in the velocity profiles of the mitral annulus in all the dogs. In the healthy dogs, S' and E' were correlated with LV peak +dP/dt and -dP/dt, respectively. E' was lower in dogs with MR than in dogs without cardiac diseases. E/E' in the MR dogs with decompensated heart failure was significantly increased in comparison with those with compensated heart failure. The sensitivity and specificity of the E/E' cutoff value of 13.0 for identifying decompensated heart failure were 80% and 83%, respectively. In addition, E/E' was significantly correlated with the ratio of left atrial to aortic diameter. These findings suggest that canine pulsed TDI can be applied clinically for estimation of cardiac function and detection of cardiac decompensation and left atrial volume overload in dogs with MR.

KEY WORDS: canine, cardiac function, echocardiography, mitral regurgitation, pulsed tissue Doppler.

Doppler echocardiography is a predominant noninvasive modality that provides a large variety of useful information on cardiac conditions in human and small animal patients. Pulsed tissue Doppler imaging (pulsed TDI) derived from Doppler echocardiography can quantify the velocity of myocardial wall and/or valve annulus motions [30, 31, 40]. In humans, pulsed TDI of the mitral annulus and myocardial wall has been demonstrated to reflect the systolic and diastolic left ventricular (LV) function in normal subjects [30, 45] and patients with dilated cardiomyopathy (DCM) [22, 46], hypertrophic cardiomyopathy (HCM) [36, 39, 46], restrictive cardiomyopathy (RCM) [14, 16, 35], constrictive pericarditis [14, 16, 35], ischemic heart diseases [4, 31, 43, 46], heart failure [1, 24], mitral regurgitation (MR) [2, 3, 17], atrial fibrillation [29], arterial hypertension [13, 46], and cardiac amyloidosis [20].

Analysis of pulsed TDI revealed that the peak early diastolic velocity (E'), peak atrial systolic velocity (A'), and peak systolic velocity (S') are typically derived from the velocity profiles of myocardial or valve annulus motions (Fig. 1) [30]. Several studies have revealed that E' and A' are correlated with LV diastolic function [1, 13, 16, 20, 24, 26, 31, 36, 39, 40, 45], and S' is correlated with LV systolic function [17, 20, 22, 29, 30, 43, 46]. E' was almost independent of preload and showed no pseudonormal pattern in contrast to the peak early diastolic velocity of LV inflow (E) [5, 24]. In addition, a ratio of E to E' (E/E') showed good correlation with pulmonary capillary wedge pressure (PCWP) and LV diastolic pressure (LVDP) in humans with sinus tachycardia, DCM, and HCM [23–25, 32].

Few reports on TDI have been described in small animal medicine [7–11, 15, 33, 34, 38]. It was demonstrated that an E/E' value greater than 9.1 indicated a mean left atrial pressure (MLAP) greater than 20 mmHg in dogs with experimentally induced acute MR [34], and TDI was available to clinically differentiate normal cats from cats with spontaneous cardiomyopathy [15]. To our knowledge, however, no...
studies have thus far demonstrated the validation of correlation between pulsed TDI and cardiac function in dogs. In addition, LV function has not yet been evaluated using pulsed TDI in clinical cases of canine spontaneous MR.

The objectives of this study were to validate the correlation between pulsed TDI and LV systolic and diastolic functions derived from cardiac catheterization in healthy dogs and to evaluate the clinical usefulness of pulsed TDI for estimation of LV function in dogs with naturally occurring MR.

MATERIALS AND METHODS

Validation of correlation of LV function between pulsed TDI and catheterization (Study 1): Five female Beagle dogs (body weight between 10.0 and 13.0 kg) were used in this study. The dogs were confirmed to be healthy by physical examination, complete blood count (CBC), serum biochemistry, electrocardiogram (ECG), thoracic radiography, and echocardiography. All the dogs were cared for in accordance with the principles outlined in the Guidebook for the Care and Use of Laboratory Animals approved by the College of Bioresource Sciences, Nihon University.

Each dog was premedicated with midazolam hydrochloride (0.2 mg/kg, IV), butorphanol tartrate (0.2 mg/kg, IV), and meloxicam (0.2 mg/kg, SC) and was intubated after the induction of anesthesia with propofol (5 mg/kg, IV). General anesthesia was maintained by inhalation of isoflurane (1.5%) and oxygen (2 L/min) under mechanical ventilation (respiratory rate, 10 breaths/min; respiratory pressure, 10–15 cmH2O; end-expiratory carbon dioxide concentration, 40 mmHg) along with the intravenous administration of pancuronium bromide (0.04–0.05 mg/kg).

Each dog was placed in dorsal recumbency, and the neck was clipped and prepared aseptically. After a midline incision of the neck, a 6-Fr micromanometer-tipped catheter (PC-460, Millar Instruments Inc, Houston, U.S.A.) was directly inserted into the isolated right carotid artery and was advanced into the LV chamber under fluoroscopic guidance.

After the position of the dog was changed to left lateral recumbency, hemodynamic and echocardiographic measurements were simultaneously recorded in a blinded manner with the dog under a transient respiratory arrest. The peak values of the positive first derivative of LV pressure (LV peak +dP/dt) and negative first derivative of LV pressure (LV peak –dP/dt) were calculated from the LV pressure profiles recorded by the catheter. Five consecutive LV peak +dP/dt and –dP/dt values were selected and averaged.

A diagnostic ultrasound system, Nemio (SSA-550A, Toshiba Medical Systems, Tokyo, Japan), was used for echocardiography. A 2-mm sample volume was placed at the septal mitral annulus and to evaluate the clinical usefulness of pulsed TDI for estimation of LV function in dogs with naturally occurring MR.

RESULTS

Study 1: Pulsed TDI could be measured under various contractile and lusitropic conditions in all dogs. In healthy dogs, E’ was 7.1 ± 1.5 cm/sec, A’ was 4.2 ± 2.9 cm/sec, S’ was 4.8 ± 0.8 cm/sec, E’/A’ was 2.3 ± 1.8, and E/E’ was 8.4.
A significant positive correlation was observed between S' and LV peak $+dP/dt$ (Fig. 2–1) and significant negative correlations were observed between E' and LV peak $-dP/dt$ (Fig. 2–2) and between E and LV peak $-dP/dt$. In contrast, no correlations were observed between A' and LV peak $-dP/dt$, between E'/A' and LV peak $-dP/dt$, between E/E' and LV peak $+dP/dt$, and between E/E' and LV peak $-dP/dt$.

Study 2: Pulsed TDI could be measured in the 66 dogs without cardiac diseases and the 39 dogs with spontaneous MR. In Group 0, heart rate was 115 ± 25 beats/min (range, 60–180 beats/min), age was 5.0 ± 3.8 years (range, 0–13 years), and body weight was 12.1 ± 11.4 kg (range, 1.6–42.5 kg) (Table 2). The heart rate significantly increased in Group IV (152 ± 25 beats/min; range, 124–184) in comparison with that in Group 0. The age of the dogs was significantly greater in Groups 1 (10.0 ± 2.5 years; range, 5–13 years), II (10.3 ± 2.9 years; range, 6–16 years), III (12.7 ± 2.6 years; range, 10–16 years), and IV (10.0 ± 3.4 years; range, 7–14 years) than that in Group 0. No significant differences were observed in body weight and gender distribution among the NYHA classes.

In Group 0, FS was 39.1% \pm 6.4%, LA/Ao was 1.25 \pm 0.14, E was 69.4 \pm 12.0 cm/sec, A was 59.2 \pm 12.3 cm/sec, E/A was 1.4 \pm 0.3, S’ was 9.1 \pm 3.1 cm/sec, E’ was 9.2 \pm 2.4 cm/sec, A’ was 7.7 \pm 2.3 cm/sec, E’/A’ was 1.2 \pm 0.4, and E’/E’ was 7.9 \pm 1.8.

Significant differences in the values of E, A, LA/Ao, $E’$, $E’/A’$, and $E/E’$ were observed among the NYHA classes. E/A and $A’$ were insignificant among the NYHA classes. FS and $S’$ were insignificant among the NYHA classes. However, FS was more likely to increase in proportion with the NYHA class in contrast to $S’$ (Table 2). $S’$ showed an insignificant correlation with FS. E and A showed a signifi-
significant difference among the groups. E' was significantly reduced in Group I (6.0 ± 1.8 cm/sec), and II (6.7 ± 1.5 cm/sec) and more likely to be reduced in Group III (6.7 ± 2.2 cm/sec), and IV (6.7 ± 1.0 cm/sec) in comparison with that in Group 0 (9.2 ± 2.4 cm/sec) (The values are mean ± SD as indicated by the "×" marks in Fig. 3–1). E'/A' significantly decreased in Group I (0.7 ± 0.3), II (0.7 ± 0.2), III (0.7 ± 0.3), and IV (0.7 ± 0.2) in comparison with that in Group 0 (1.2 ± 0.4) (The values are mean ± SD as indicated by the “×” marks in Fig. 3–2). A significant difference was observed in the E/E' value among the groups (The values are mean ± SD as indicated by the “×” marks in Fig. 3–3).

The LA/Ao and E values significantly were increased in CHF (+) (LA/Ao, 1.84 ± 0.50; E, 100.2 ± 29.7 cm/sec) in comparison with those in CHF (–) (LA/Ao, 1.31 ± 0.21; E, 61.5 ± 14.7 cm/sec) and Group 0 (LA/Ao, 1.25 ± 0.14; E, 69.4 ± 12.0 cm/sec). However, a significant difference was not observed between CHF (–) and Group 0. E/E' was significantly increased in CHF (+) (14.8 ± 4.0) in comparison with those in CHF (–) (10.0 ± 2.7) and Group 0 (7.9 ± 1.8). E/E' was also significantly increased in CHF (–) in comparison with that in Group 0. The sensitivity and specificity of the E/E' cutoff value of 13.0 for identifying CHF (+) were 80% and 83%, respectively (The values are mean ± SD as indicated by the “×” marks in Fig. 4–1, Table 3). A significant correlation was detected between E/E’ and LA/Ao (r = 0.57, Fig. 4–2).

The S', E', A', E'/A', and E/E' values were not significantly correlated with heart rate in Group 0. However, E'/A' had a weak and significant inverse correlation with aging (Table 4). E', A', and S' values had a significant correlation with body weight (Fig. 5).

Table 2. Characteristics and the values of echocardiographic measurements in dogs without cardiac diseases (n=66) and with MR (n=39)

<table>
<thead>
<tr>
<th></th>
<th>Group 0</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>Group IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>66</td>
<td>12</td>
<td>12</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Gender (female/male)</td>
<td>36/30</td>
<td>6/6</td>
<td>7/5</td>
<td>5/4</td>
<td>2/4</td>
</tr>
<tr>
<td>HR (bpm)</td>
<td>115 ± 25</td>
<td>116 ± 23</td>
<td>121 ± 22</td>
<td>106 ± 21</td>
<td>152 ± 25</td>
</tr>
<tr>
<td>BW (kg)</td>
<td>12.1 ± 11.4</td>
<td>7.9 ± 4.2</td>
<td>8.0 ± 3.6</td>
<td>7.7 ± 4.1</td>
<td>3.6 ± 1.0</td>
</tr>
<tr>
<td>(range)</td>
<td>(1.6–42.5)</td>
<td>(2.5–15.0)</td>
<td>(2.8–15.0)</td>
<td>(2.0–13.2)</td>
<td>(2.7–5.5)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>5.0 ± 3.8</td>
<td>10.0 ± 2.5</td>
<td>10.3 ± 2.9</td>
<td>12.7 ± 2.6</td>
<td>10.0 ± 3.4</td>
</tr>
<tr>
<td>(range)</td>
<td>(0–13)</td>
<td>(5–13)</td>
<td>(6–16)</td>
<td>(10–16)</td>
<td>(7–14)</td>
</tr>
<tr>
<td>FS (%)</td>
<td>39.1 ± 6.4</td>
<td>39.7 ± 6.6</td>
<td>38.2 ± 8.2</td>
<td>43.5 ± 6.8</td>
<td>48.7 ± 11.3</td>
</tr>
<tr>
<td>LA/Ao ratio</td>
<td>1.25 ± 0.14</td>
<td>1.32 ± 0.21</td>
<td>1.30 ± 0.21</td>
<td>1.71 ± 0.47</td>
<td>2.02 ± 0.53</td>
</tr>
<tr>
<td>E (cm/sec)</td>
<td>69.4 ± 12.0</td>
<td>57.2 ± 14.2</td>
<td>65.4 ± 15.0</td>
<td>87.2 ± 28.6</td>
<td>113.2 ± 28.3</td>
</tr>
<tr>
<td>A (cm/sec)</td>
<td>59.2 ± 12.3</td>
<td>58.0 ± 9.8</td>
<td>59.2 ± 14.6</td>
<td>80.1 ± 20.2</td>
<td>102.6 ± 33.4</td>
</tr>
<tr>
<td>E/A</td>
<td>1.4 ± 0.3</td>
<td>1.0 ± 0.3</td>
<td>1.1 ± 0.2</td>
<td>1.1 ± 0.2</td>
<td>1.3 ± 0.7</td>
</tr>
<tr>
<td>S' (cm/sec)</td>
<td>9.1 ± 3.1</td>
<td>8.1 ± 1.6</td>
<td>7.9 ± 2.3</td>
<td>9.0 ± 2.6</td>
<td>8.9 ± 2.7</td>
</tr>
<tr>
<td>E' (cm/sec)</td>
<td>9.2 ± 2.4</td>
<td>6.0 ± 1.8</td>
<td>6.7 ± 1.5</td>
<td>6.7 ± 2.2</td>
<td>6.7 ± 1.0</td>
</tr>
<tr>
<td>A' (cm/sec)</td>
<td>7.7 ± 2.3</td>
<td>8.4 ± 2.1</td>
<td>9.5 ± 2.7</td>
<td>10.1 ± 1.3</td>
<td>9.5 ± 1.9</td>
</tr>
<tr>
<td>E'/A'</td>
<td>1.2 ± 0.4</td>
<td>0.7 ± 0.3</td>
<td>0.7 ± 0.2</td>
<td>0.7 ± 0.3</td>
<td>0.7 ± 0.2</td>
</tr>
<tr>
<td>E/E'</td>
<td>7.9 ± 1.8</td>
<td>10.0 ± 2.2</td>
<td>10.0 ± 2.4</td>
<td>13.3 ± 2.6</td>
<td>17.1 ± 4.8</td>
</tr>
</tbody>
</table>

All values were expressed as mean ± SD. HR: heart rate, BW: body weight, bpm: beats per minute, LA/Ao ratio: a ratio of left atrial and aortic diameter, FS: fractional shortening, E: the peak early diastolic velocity of LV inflow; A, the peak atrial systolic velocity of LV inflow; E/A: a ratio of E to A, E': the peak early diastolic velocity of mitral annulus, A': the peak atrial systolic velocity of mitral annulus, E'/A': a ratio of E' to A', E/E': a ratio of E to E', Group 0: dogs without cardiac diseases, Group I, II, III and IV: dogs with MR classified by the NYHA classes.

a) Significant difference with Group 0 (p<0.05). b) Significant difference with Group I (p<0.05). c) Significant difference with Group II (p<0.05). d) Significant difference with Group III (p<0.05).
PULSED TISSUE DOPPLER IN CANINE HEART DISEASE

DISCUSSION

Pulsed TDI is used for the measurement of the velocity of LV wall and valve annulus motions, whereas the traditional pulsed Doppler is used for the determination of various laminar blood flow velocities. As observed in our study, the measurement of the velocity of LV wall and valve annulus motions was possible using pulsed TDI in healthy dogs and dogs with spontaneous chronic MR. The use of pulsed TDI is therefore feasible in canine cardiac diseases, similar to its use in humans.

In study 1, S’ derived from pulsed TDI of septal mitral annulus was associated with LV systolic function in healthy dogs. In a previous study, it was demonstrated that S’ of mitral annulus was significantly deceased in human patients with myocardial infarction when compared with that in normal subjects, and S’ and ejection fraction (EF) or LV peak
On the other hand, it was reported that significant systolic dysfunction was not identified in dogs with MR. However, lower S’ values at rest and after exercise have been demonstrated to indicate reduced cardiac contractile reserve in human patients with MR. In contrast, EF at rest was not found to be associated with cardiac contractile in human patients with MR [17]. Because EF is clearly dependent on preload and afterload, and these load have a major influence on the utility of EF in MR. In addition, S’ was reported to function as an independent predictor of postoperative EF reduction in human asymptomatic patients with severe MR [2] and as a better factor for identifying human patients with MR who are at risk for adverse outcomes [41]. On the other hand, it was reported that S’ in human patients significantly increased in primary MR (mitral valve prolapse or flail leaflet) in comparison with that in asymptomatic patients without MR [6]. In our study, no difference was observed in the S’ values of dogs with MR among the NYHA classes. Also, FS, an ejection phase index, was more likely to increase in proportion to the severity of clinical signs of left-sided heart failure. These findings suggest that LV systolic function in canine patients with MR is relatively preserved even in NYHA class IV.

In clinical practice, pulsed Doppler of LV inflow is extensively applied for noninvasive estimation of LV diastolic function in human and small animal patients [18, 19, 27, 28, 37]. Some studies on humans [5, 24, 40] reported that E’ behaved as a preload-independent index of LV diastolic function and did not show a pseudonormal pattern as seen in E and E/A derived from the pulsed Doppler inflow of LV. In study 1, E’ of septal mitral annulus was correlated with LV peak –dP/dt in the healthy dogs. Further, in study 2, we investigated E’ of septal mitral annulus in canine clinical cases with spontaneous MR. The result of study 2 indicated that E’ was more likely to reduced in dogs with MR in comparison with dogs without cardiac diseases (Group 0). This finding suggested that dogs with MR suffered from diastolic dysfunction. However, a previous study reported that in a canine model of acute MR, E’ of lateral mitral annulus increased in comparison with that of an intact annulus before the creation of MR [34]. This discrepancy is believed to be based on the duration of MR. The results of our study possibly suggest that long-term progression of MR causes LV remodeling with LV diastolic dysfunction due to the development of volume overload in clinical cases with chronic MR. This finding may support early clinical application of β-blockers in dogs with MR.

Table 3. The values of E/E’ in CHF (–) (n=24) and CHF (+) (n=15) dogs

<table>
<thead>
<tr>
<th></th>
<th>Group 0</th>
<th>CHF (–)</th>
<th>CHF (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>66</td>
<td>24</td>
<td>15</td>
</tr>
<tr>
<td>LA/Ao ratio</td>
<td>1.25 ± 0.14</td>
<td>1.31 ± 0.21</td>
<td>1.84 ± 0.50(ab)</td>
</tr>
<tr>
<td>E (cm/sec)</td>
<td>69.4 ± 12.0</td>
<td>61.5 ± 14.7</td>
<td>100.2 ± 29.7(ab)</td>
</tr>
<tr>
<td>E/E’</td>
<td>7.9 ± 1.8</td>
<td>10.0 ± 2.7(ab)</td>
<td>14.8 ± 4.0(ab)</td>
</tr>
</tbody>
</table>

All values were expressed as mean ± SD. LA/Ao ratio: a ratio of left atrial and aortic diameter, E: the peak diastolic velocity of LV inflow, E/E’: the ratio of E to E’, CHF (–): compensated heart failure, Group 0: dogs without cardiac diseases.

a) Significant difference with Group 0 (p<0.05). b) Significant difference with CHF (–) (p<0.05).

Table 4. Relationship between pulsed TDI and heart rate, body weight or aging in dogs without cardiac diseases (n=66)

<table>
<thead>
<tr>
<th></th>
<th>HR (bpm)</th>
<th>BW (kg)</th>
<th>Age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S’ (cm/sec)</td>
<td>r=0.02</td>
<td>r=0.71</td>
<td>r=0.22</td>
</tr>
<tr>
<td></td>
<td>p=ns</td>
<td>p=ns</td>
<td>p=ns</td>
</tr>
<tr>
<td>E’ (cm/sec)</td>
<td>r=0.05</td>
<td>r=0.47</td>
<td>r=0.01</td>
</tr>
<tr>
<td></td>
<td>p=ns</td>
<td>p=ns</td>
<td>p=ns</td>
</tr>
<tr>
<td>A’ (cm/sec)</td>
<td>r=0.06</td>
<td>r=0.45</td>
<td>r=0.31</td>
</tr>
<tr>
<td></td>
<td>p=ns</td>
<td>p=ns</td>
<td>p=0.05</td>
</tr>
<tr>
<td>E'/A’</td>
<td>r=0.09</td>
<td>r=0.03</td>
<td>r=0.34</td>
</tr>
<tr>
<td></td>
<td>p=ns</td>
<td>p=ns</td>
<td>p=0.05</td>
</tr>
<tr>
<td>E/E’</td>
<td>r=0.15</td>
<td>r=0.33</td>
<td>r=0.04</td>
</tr>
<tr>
<td></td>
<td>p=ns</td>
<td>p=ns</td>
<td>p=ns</td>
</tr>
</tbody>
</table>

All values were expressed as mean ± SD. HR: heart rate, BW: body weight, bpm: beats per minute, E’: the peak early diastolic velocity of mitral annulus, A’: the peak atrial systolic velocity of mitral annulus, S’: the peak systolic velocity of mitral annulus, E'/A’: the ratio of E’ to A’, E/E’: a ratio of E to E’, ns: no significant.

Fig. 5. Relationship between S’ and body weight in dogs without cardiac diseases. A significant positive correlation was observed between S’ and body weight. S’: the peak systolic velocity of mitral annulus.
In our study, E/E’ in the MR dogs with decompensated CHF significantly was increased in comparison with that in the MR dogs with compensated CHF, and E/E’ had a significant correlation with LA/Ao, an indicator of LA dilation. These findings indicate that the E/E’ values can be clinically applied to detect LA volume overload in dogs with MR. In previous studies on humans, E/E’ had a strong correlation with PCWP [24] and a moderate to good correlation with LVDP in patients with HCM and sinus rhythm [23, 32]. In small animal medicine, it has been demonstrated that for the lateral mitral annulus, E/E’ greater than 9.1 or less than 6.0 indicates a 95% probability that MLAP was greater than or equal to 13 mmHg, respectively [34]. In addition, both E/E’ and E were linearly correlated with MLAP; however, the R² value for E/E’ (0.83) was greater than that for E (0.73) in a canine model of acute MR [34]. In contrast, E/E’ at a cutoff value of 13 had good sensitivity and specificity for identifying canine decompensated heart failure in our study. E/E’, therefore, can be clinically applied to detect cardiac decompensation in dogs with MR.

We evaluated the influences of heart rate, aging, and body weight on pulsed TDI in dogs with MR. The results showed that pulsed TDI was independent of heart rate in dogs without cardiac diseases. In our studies, E’ was not significantly correlated with aging in dogs without cardiac diseases, whereas E’ was reported to be inversely correlated with age in healthy humans [45]. This finding may be attributable to the differences in the life spans between humans and dogs. In dogs, cardiac compliance may be less affected by changes during aging due to the shorter life spans. Our study showed that S’ was correlated with body weight, and E’ and A’ tended to increase with increase in weight. This finding may suggest that pulsed TDI is affected by whole heart motion in dogs. More detailed information on the influence of body size may be needed prior to clinical application of pulsed TDI in small animal clinics.

The association between LV systolic and diastolic functions and the parameters of pulsed TDI of only septal mitral annulus was evaluated in this study. This is because based on the results of our preliminary study, canine pulsed TDI showed the highest reproducibility and briefest measurability for the septal mitral annulus when compared with other regions. However, some studies have demonstrated that S’ of not only the mitral annulus but also the other parts of the myocardial wall was correlated with LV peak +dP/dt in human patients with DCM and atrial fibrillation [22, 29]. In addition, it was also reported that E’ of the posterior wall negatively correlated with the LV relaxation time constant in human patients with various heart diseases [31]. Therefore, it may be important to investigate the association between LV systolic and diastolic functions and the parameters of pulsed TDI of various regions in dogs, excluding the septum of mitral annulus or myocardial walls in dogs.

In conclusion, this study has demonstrated that the use of pulsed TDI is feasible for the estimation of LV systolic and diastolic function in dogs and can detect cardiac decompensation and LA volume overload in canine clinical cases with MR. Further investigations are necessary to clarify the clinical significance of pulsed TDI in canine patients with other cardiac diseases.

REFERENCES

