Identification of Weakly Beta-Hemolytic Porcine Spirochetes by Biochemical Reactions, PCR-Based Restriction Fragment Length Polymorphism Analysis and Species-Specific PCR

Tatsuo OHYA1)*, Hiroshi ARAKI2) and Masuo SUEYOSHI3)

2)Nagasaki Prefecture Kenhoku Livestock Hygiene Service Center, 92 Takebe, Sasebo 858–091 and 3)Department of Veterinary Hygiene, Faculty of Agriculture, Miyazaki University, Miyazaki 889–2155, Japan.

(Received 27 November 2007/Accepted 21 April 2008)

ABSTRACT. We examined the usefulness of PCR-based restriction fragment length polymorphism (PCR-RFLP) and species-specific PCR combined with a newly devised rapid biochemical test using microplates for identifying weakly beta-hemolytic intestinal spirochetes (WBHIS) isolated from pigs. WBHIS strains showing atypical biochemical characteristics were decisively identified at the species level by PCR-RFLP and species-specific PCR. Identification of WBHIS at the species level in routine diagnostic work will certainly contribute to clarifying the pathogenicity of WBHIS.

KEY WORDS: Brachyspira, PCR-RFLP, spirochete.

NOTE Bacteriology

Intestinal infections with Brachyspira species are responsible for severe economic losses in the swine industry worldwide. Brachyspira species identified in pigs include one strongly hemolytic species Brachyspira hyodysenteriae and 4 weakly beta-hemolytic intestinal spirochetes (WBHIS): B. innocens, B. pilosicoli, B. intermedia, and B. murdochii. B. hyodysenteriae is considered the most pathogenic species and causes swine dysentery [6, 17]. B. pilosicoli has been linked to a milder colitis known as porcine intestinal (or colonic) spirochetosis [5, 14, 15]. These 4 species of weakly beta-hemolytic intestinal spirochetes have a similar appearance on blood agar, and the pathogenicity of these species except B. pilosicoli is controversial. Although Kinyon and Harris [8] and Lee et al. [9] considered these species as non-pathogenic, other studies [2, 10] have provided evidence that even these species may induce enterocolitis.

Our bacteriological surveys of swine suffering from swine dysentery, colitis, or diarrhea, indicated that 49 strains of WBHIS were isolated in 21 cases and B. hyodysenteriae was isolated in 101 cases. Among the 21 cases, B. hyodysenteriae was isolated with WBHIS in three cases, and B. pilosicoli and B. innocens were isolated in one case. In the remaining 17 cases, only a single species of WBHIS was isolated.

Bacteriological examination of swine dysentery and related diseases is mainly focused on B. hyodysenteriae or B. pilosicoli. Moreover, precise identification of WBHIS tends to be neglected, and this may correlate to the insufficient description of their pathogenicity.

The aim of this study was to evaluate the usefulness of PCR-based restriction fragment length polymorphism (PCR-RFLP) and species-specific PCR combined with biochemical tests for identifying WBHIS.

Forty nine isolates of WBHIS were investigated in this study, and 4 additional type strains of Brachyspira species were included as references (Table 1).

Currently, porcine Brachyspira isolates are differentiated based on phenotypic criteria, including intensity of hemolysis, indole production, hippurate hydrolysis, and the activities of α-galactosidase, α-glucosidase, and β-glucosidase [3, 12].

The spirochetes were streaked on trypticase soy agar (TSA; Becton Dickinson Microbiology Systems, Sparks, MD., U.S.A.) containing 5% sheep blood and incubated for three days under anaerobic conditions. Beta-hemolysis was classified as weak or strong, using the type strains of B. hyodysenteriae ATCC 27164 and B. innocens ATCC 29796 as references.

A rapid method for identifying weakly beta-hemolytic spirochetes based on biochemical characteristics was newly devised using 96-well round-bottomed microplates. The microplates were incubated aerobically for 2 hr at 37°C prior to the addition of detection reagents.

Fresh growth of spirochetes on TSA with 5% sheep blood was collected in phosphate buffered saline (pH 7.2), and a bacterial suspension with an optical density similar to the McFarland number 8 standard was prepared. This dense suspension was used in 50 μl portions as inoculums for the following biochemical reactions.

Indole production was tested using tryptophan broth (0.5% tryptophan, 0.2% dipotassium phosphate, pH 7.8). Tryptophan broth (50 μl) was mixed with an equal volume of bacterial suspension and incubated aerobically for 2 hr at 37°C. 25 μl of Kovac’s reagent was then added. Production of indole was confirmed by the formation of a pink
to red color in alcohol layer around well within 10 min. In addition, the spot indole test [1, 13] was performed by
smearing the bacterial growth from a plate culture on a filter paper saturated with the indole reagent (1% p-dimethylami-
noazobenzene dissolved in 10% hydrochloric acid). Positive reactions were indicated by a blue color development within
3 min. Negative reactions remained pink.
For hippurate hydrolysis test, 50 µl of 1% sodium hippurate in water was mixed with an equal volume of the dense
suspension of each spirochete and incubated aerobically for 3 min. Negative reactions remained pink.

Reactions were performed in the manner described above. Additional species-specific PCR described by Weissen-
böck et al. [16] was used for decisive identification of porcine Brachyspira species. Species-specific PCR was performed under 4 different annealing temperatures ranging from 52 to 62°C for each species, and the PCR products were separated in the manner described above.

Thirty-three out of 49 WBHIS strains showed the characteristics of the biochemical group IIIbc described by Fellström et al. [4], which comprises B. innocens, and PCR-RFLP analysis supported this identification (data not shown). Sixteen other strains had atypical or inconsistent biochemical characteristics but were identified at the species level by PCR-RFLP analysis (Fig. 1). Results of the decisive species-specific PCR are shown in Fig. 2.

Two field strains identified as B. pilosicoli showed atypical biochemical reactions. Strain NGS134/1997 was nega-
tive for hippurate hydrolysis, which is a distinct characteristic of B. pilosicoli. Strains AMR206/2006 and ATCC 51139 were positive for hippurate hydrolysis; however, positive reaction was detected only when ninhydrin reagent II was used. It was proved that ninhydrin reagent II is essential for accurate judgment for identifying Brachy-

Table 1. Identification of 49 field isolates of weakly beta-hemolytic porcine intestinal spirochetes by biochemical reactions, PCR-RFLP analysis, and species-specific PCR

<table>
<thead>
<tr>
<th>Strain</th>
<th>Indole production</th>
<th>Hippurate hydrolysis</th>
<th>α-galactosidase activity</th>
<th>β-glucosidase activity</th>
<th>Biochemical group<sup>a</sup></th>
<th>Species indicated by PCR-RFLP and species-specific PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGS134/1997</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Not defined</td>
<td>B. pilosicoli</td>
</tr>
<tr>
<td>AMR206/2006</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>Atypical IV</td>
<td>B. pilosicoli</td>
</tr>
<tr>
<td>NGSL17/1997</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>IIIa</td>
<td>B. innocens</td>
</tr>
<tr>
<td>NGSL18/1997</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>IIIa</td>
<td>B. innocens</td>
</tr>
<tr>
<td>NGSL19/1997</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>IIIa</td>
<td>B. innocens</td>
</tr>
<tr>
<td>NGSL20/1997</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>IIIa</td>
<td>B. innocens</td>
</tr>
<tr>
<td>AMR163/2004</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>Not defined</td>
<td>B. innocens</td>
</tr>
<tr>
<td>AMR164/2004</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>Not defined</td>
<td>B. innocens</td>
</tr>
<tr>
<td>STMM1/1996</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>II</td>
<td>B. intermedia</td>
</tr>
<tr>
<td>AMR207/2006</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>II</td>
<td>B. intermedia</td>
</tr>
<tr>
<td>KGS15/1999</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>IIIa</td>
<td>B. murdochii</td>
</tr>
<tr>
<td>KGS160/2000</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>IIIa</td>
<td>B. murdochii</td>
</tr>
<tr>
<td>KGS161/2000</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>IIIa</td>
<td>B. murdochii</td>
</tr>
<tr>
<td>KGS162/2000</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>IIIa</td>
<td>B. murdochii</td>
</tr>
<tr>
<td>AMR165/2004</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>Not defined</td>
<td>B. murdochii</td>
</tr>
<tr>
<td>AMR205/2006</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>Not defined</td>
<td>B. murdochii</td>
</tr>
<tr>
<td>Remaining 33 strains</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>IIIbc</td>
<td>B. innocens</td>
</tr>
</tbody>
</table>

^a According to Fellström et al. [4].
IDENTIFICATION OF PORCINE SPIROCHETES

Two field isolates were finally identified as *B. intermedia*, and strain STM44/1996 lacked indole production. For the indole production test, consistent results were obtained for both the microplate method and the spot indole test.

Identification of weakly beta-hemolytic porcine spirochetes involves some difficulties because of their less active biochemical nature or due to the frequent presence of atypical phenotypic strains. We examined the usefulness of PCR-RFLP analysis and species-specific PCR combined with a newly devised rapid biochemical test. It was concluded that proper use of PCR-RFLP analysis or species-specific PCR is essential for precise identification of WBHIS. Identification of WBHIS at the species level in routine diagnostic work will definitely contribute in clarifying the pathogenicity of WBHIS.

REFERENCES

10. Neef, N. A., Lysons, R. J., Trott, D. J., Hampson, D. J., Jones,

