Molecular Evidence of *Enterocytozoon bieneusi* in Japan

Niichiro ABE1, Isao KIMATA2 and Motohiro ISEKI3

1)Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, 8–34 Tojo-cho, Tennoji-ku, Osaka 543–0026, 2)Department of Parasitology, Graduate School of Medicine, Osaka City University, 1–4–3 Asahi-machi, Abeno-ku, Osaka 545–8585 and 3)Department of Parasitology, Graduate School of Medical Science, Kanazawa University, Takara-machi, Kanazawa 920–8640, Japan

(Received 30 June 2008/Accepted 3 October 2008)

Abstract. *Enterocytozoon bieneusi* is an emerging and clinically significant enteric pathogen in humans associated mainly with chronic diarrhea. It has been found in a variety of wild, domestic and companion mammals and birds. To date, epidemiological surveys of *E. bieneusi* infection in humans, other mammals and birds have been performed in more than 21 countries in Africa, the Americas, Australia and Europe. In Asia *E. bieneusi* has been found in India, Thailand, Vietnam and Korea, but it has been quite unclear whether this pathogen is present in Japan. In the present study, we examined 149 DNAs extracted from 45 human (9 of them HIV-positive) and 104 animal fecal samples by PCR. Two dogs and a cat were positive and their genotypes were found to be dog specific and zoonotic (genotype K) types, respectively. Present study is the first record of *E. bieneusi* in Japan.

Key words: *Enterocytozoon bieneusi*, microsporidia, PCR, zoonotic parasite.

Microsporidia is an obligate intracellular pathogen in humans and animals. This pathogen is considered to be highly diverged and specialized parasites that are related to the fungi, but their exact relationship to the fungi remains to be unclear [13]. *Enterocytozoon bieneusi*, first detected in a HIV-positive patient in 1985, has been the most frequently diagnosed microsporidian species in humans, particularly in immunocompromised patients with AIDS and chronic diarrhea [18]. In addition, *E. bieneusi* has been found in a variety of wild, domestic and companion mammals and birds [18]. Based on subtle sequence differences at the internal transcribed spacer (ITS) and a portion of the small and large subunit ribosomal RNA gene region, *E. bieneusi* consists of multiple genotypes. Recent molecular epidemiological studies show that some genotypes are host-specific and others are zoonotic [18]. Therefore, identification of the isolates at the genotype level is important for the control of *E. bieneusi* infections and for understanding the population structure of *E. bieneusi* genotypes. To date, epidemiological surveys of *E. bieneusi* infection in humans, other mammals and birds have been performed in more than 21 countries in Africa, the Americas, Australasia and Europe [10, 18, 22]. In Asia *E. bieneusi* has been found in India, Thailand, Vietnam and Korea [14, 15, 18]. The present study was undertaken to investigate whether this pathogen is present in Japan.

As shown in Table 1, a total of 149 DNA samples from humans and animals (45 diarrheic humans, 9 of them HIV-positive, 6 head of cattle, 5 pigs, 1 raccoon dog, 1 mongoose, 3 ferrets, 2 cockatiels, 7 cats and 79 dogs) used previously [1–9, 19, 20] for the examination of intestinal protozoan parasites by PCR were provided for the present study. All DNA samples from humans were originated from diarrheic patients infected with *Cryptosporidium hominis*, *C. parvum*, *C. meleagridis*, *Cyclospora cayetanensis*, *Giardia duodenalis*, *Isospora belli* or *Entamoeba histolytica*. The 45 animal samples with the exception of 6 and 53 samples from cats and dogs, respectively, were from individuals infected with *C. parvum*, *C. andersoni*, *C. suis*, *C. canis*, *Cryptosporidium* ferret or mongoose genotypes, *C. baileyi*, *C. meleagridis*, *G. duodenalis*, *Isospora rivolta* or *Eimeria furonis*. Sixty-six samples from 7 cats and 59 dogs were from stray animals in Osaka City, and 20 dog samples were from animals at a pet shop in Kanazawa City and from a house pet in Niigata City. It was unclear whether the animals examined showed diarrhea or not. These DNA samples had been extracted and purified as follows. The oocysts or cysts in fecal samples were concentrated by centrifugal flotation using sucrose or zinc sulfate solution and the genomic DNAs were extracted and purified using Qiagen kits (QIAamp DNA Stool or DNA Mini Kit) (Qiagen, Hilden, Germany) after boiling the concentrates for 10 min. In the present study, the internal transcribed spacer (ITS) and a portion of the large and small subunit ribosomal RNA gene region were amplified by nested PCR using primers (EBITS3 and EBITS4 for the first PCR, EBITS1 and EBITS2.4 for the second PCR) specific for *E. bieneusi* [11]. DNA of *E. bieneusi* originating from cattle [21] was used as a positive control for PCR. Amplification products were purified using the QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany) and sequenced in both directions with the EBITS1 and EBITS2.4 primer pair on an ABI 310 automated sequencer (Applied Biosystems, CA, U.S.A.). Sequence chromatograms from each strand were aligned and inspected using the SEQUENCHER Version 4.1 (Gene Codes Corp., MI, U.S.A.). The sequences of approximately
360 bp fragments were compared with sequences in the DNA database (GenBank/DDBJ/EMBL) by FASTA analysis (DDBJ, http://fasta.ddbj.nig.ac.jp/top-j.html).

The specific fragment (approximately 360 bp) was successfully amplified in 3 DNA samples from a cat and two dogs (Fig. 1). The specific fragment (approximately 360 bp) was successfully amplified in 3 DNA samples from a cat and two dogs (Fig. 1).

Table 1. Information of 149 DNA samples examined in the present study

<table>
<thead>
<tr>
<th>Origin</th>
<th>Number of samples examined</th>
<th>Number of samples positive for E. bieneusi by PCR</th>
<th>E. bieneusi genotypes</th>
<th>Collection period of fecal samples</th>
<th>Host location</th>
<th>Other intestinal protozoan parasites identified by PCR (number of positive samples)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humans (farm animal)</td>
<td>6</td>
<td>0</td>
<td>2003–2005</td>
<td>Hokkaido</td>
<td>C. parvum (3), C. andersoni (1), G. duodenalis (2)</td>
<td></td>
</tr>
<tr>
<td>Pigs (farm animal)</td>
<td>5</td>
<td>0</td>
<td>2002</td>
<td>Gifu</td>
<td>C. suis (5)</td>
<td></td>
</tr>
<tr>
<td>Raccoon dog (wild animal)</td>
<td>1</td>
<td>0</td>
<td>2003</td>
<td>Osaka</td>
<td>C. parvum (1)</td>
<td></td>
</tr>
<tr>
<td>Mongoose (zoo animal)</td>
<td>1</td>
<td>0</td>
<td>2000</td>
<td>Osaka</td>
<td>C. parvum (1)</td>
<td></td>
</tr>
<tr>
<td>Ferrets (pet shop animal)</td>
<td>3</td>
<td>0</td>
<td>2002–2006</td>
<td>Ishikawa</td>
<td>Cryptosporidium mongoose genotype (1)</td>
<td></td>
</tr>
<tr>
<td>Cockatiels (pet shop animal)</td>
<td>2</td>
<td>0</td>
<td>2002</td>
<td>Ishikawa</td>
<td>C. baileyi (1), C. meleagridis (1)</td>
<td></td>
</tr>
<tr>
<td>Cats (stray animal)</td>
<td>7</td>
<td>1</td>
<td>2001</td>
<td>Osaka</td>
<td>I. rivolta (1)</td>
<td></td>
</tr>
<tr>
<td>Dogs (stray animal)</td>
<td>59</td>
<td>1</td>
<td>Dog specific</td>
<td>Osaka</td>
<td>Cryptosporidium canis (17)</td>
<td></td>
</tr>
<tr>
<td>(pet shop animal)</td>
<td>19</td>
<td>1</td>
<td>Dog specific</td>
<td>Ishikawa</td>
<td>C. canis (8)</td>
<td></td>
</tr>
<tr>
<td>(house pet animal)</td>
<td>1</td>
<td>0</td>
<td></td>
<td>Niigata</td>
<td>C. canis (1)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>149</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) All were diarrheic patients.
b) Including 9 HIV-positive patients.
c) Mixed infection with I. rivolta.

In the present study, we confirmed for the first time the presence of E. bieneusi in Japan. A zoonotic genotype, genotype K, was found in a cat and a dog specific genotype was found in two dogs. The genetically different novel type in dogs (accession number AF059610) was first found in farm dogs in Switzerland in 1999 [17]. The same type was found in a dog in Portugal in 2006 [16]. To our knowledge, many isolates from humans, other mammals and birds have been genotyped, but this genotype had been found in dogs only [16, 17] and therefore was considered to be a dog-specific genotype. In the present study, we found the same genotype from two dogs from Osaka and Kanazawa. This finding further supports that this genotype is dog specific. Two zoonotic genotypes, PtEbIX (identical to Peru 9, D, PigEBITS9, WL8) and PtEbVII (identical to Peru 6), were also found in the 8 isolates from dogs genotyped previously [16]. Therefore, cats and dogs that are in close contact with humans will be possible carriers of both human pathogenic and host-adapted genotypes.

In the present study, all samples from humans were negative and only a few individuals were positive in animals. The inadequate DNA extraction method was probably responsible for the low detection of the parasite. Microsporidian spores are very hardy, and most researchers mechanically or chemically break the spore wall prior to conduct DNA extraction [10, 11, 15, 16]. The procedure using boiling and Qiagen kits were useful to prepare DNAs from oocysts and cysts, but would have left most spores intact.

To date, clinical cases of E. bieneusi infection remain to be reported in Japan. Enterocytozoon bieneusi would be
overlooked at Japanese medical centers because this pathogen is not known to Japanese physicians and medical technologists. Further fecal examinations in patients with chronic diarrhea and animals are necessary to clarify the epidemiology of *E. bieneusi* infection in Japan.

ACKNOWLEDGMENTS. We gratefully thank Drs. Ronald Fayer and Mónica Santín, Environmental Microbial Safety Laboratory, United States Department of Agriculture, Animal and Natural Resources Institute Agricultural Research Service, for their helpful advices about the examination of *E. bieneusi* by PCR and for providing the *E. bieneusi* DNA.

REFERENCES

