Differential Neurochemical Responses of the Canine Striatum with Pentobarbital or Ketamine Anesthesia: A 3T Proton MRS Study

Sung-Ho LEE1), Sang-Young KIM4), Dong-Cheol WOO3), Bo-Young CHOE4), Kyung-Nam RYU2), Woo-Suk CHOI3), Geon-Ho JAHNG3), Sung-Vin YIM5), Hwi-Yool KIM1) and Chi-Bong CHOI2)*

1)Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, #1 Hwayang-Dong, Kwangjin-Gu, Seoul 134–130, 2)Department of Radiology, Kyung Hee University Medical Center, Hoeiki-Dong, Dongdaemun-Gu, Seoul 130–702, 3)Department of Radiology, East-West Neo Medical Center, School of Medicine, Kyung Hee University, #149 Sangil-Dong, Gangdong-Gu, Seoul 134–090, 4)Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, #505 Banpo-Dong, Seocho-Gu, Seoul 137–701 and 5)Department of Clinical Pharmacology, School of Medicine, Kyung Hee University, Hoeiki-Dong, Dongdaemun-Gu, Seoul 130–701, Republic of Korea

(Received 29 May 2009/Accepted 12 January 2010/Published online in J-STAGE 26 January 2010)

ABSTRACT. Although anesthetic agents are known to affect cerebral metabolism, pentobarbital and ketamine have been widely used for animal imaging studies. The purpose of this study is to evaluate alterations in striatum metabolites in dogs between anesthetized with pentobarbital and with ketamine in proton magnetic resonance spectroscopy (1H-MRS). 1H-MRS was performed to ten healthy adult beagle dogs (9–11 kg) at a field strength of 3 T in order to identify metabolic changes after pentobarbital or ketamine administration in the striatum in vivo. Ten dogs were divided into 2 groups as follows: 5 as the pentobarbital-administered group (P group) and 5 as the ketamine-administered group (K group). We found that levels of Glx of the P group was significantly lower than that of the K group (6.90 ± 0.99 (SD) vs 9.77 ± 1.14 in 5 dogs, p= 0.003). In addition, the P group also has lower levels of Cr (6.29 ± 0.65 vs 6.45 ± 1.13 in 5 dogs, p=0.041) compared to the K group. However, there were no significant difference between the P group and the K group in striatal levels of Cho and Ins (p>0.1). We demonstrated that MRS-measured metabolites in the specific regions of the brain can be influenced by anesthetic agents.

KEY WORDS: canine, ketamine, MR spectroscopy, pentobarbital, striatum.

Studies in neuroscience and anesthesiology have focused on the modulation of synaptic communication that involves neurotransmitters induced by anesthetic drugs [12]. These anesthetics modify the release and concentration of neurotransmitters at specific regions in the brain [1].

Positron emission tomography (PET), single-photon emission-computed tomography (SPECT), and proton magnetic resonance imaging (1H-MRI) and spectroscopy (1H-MRS) offer noninvasive methods for functional and metabolic/biochemical evaluation of the brain [17]. One of these methods, in vivo single-voxel 1H-MRS, is now a widely available method on MRI scanners used for experimental and clinical studies [24]. 1H-MRS can measure the levels of several brain metabolites, including creatine (Cr)/phosphocreatine (PCr), choline-containing compound (Cho), and N-acetyl-aspartate (NAA) [24]. In this respect, MRS can offer a noninvasive and efficient means for performing functional and metabolic/biochemical evaluation of the brain, which may be useful in the diagnosis and follow-up of metabolic and degenerative diseases [4].

The striatum is the major input station of the basal ganglia system. It is involved in Parkinson’s disease, Huntington’s disease, choreas, choreothetosis and dyskinesias [17]. Recently, 1H-MRS studies of common and severe neuropsychiatric disorders (e.g., obsessive-compulsive disorder, schizophrenia, etc.) have reported abnormal metabolite levels in the striatum (cudate and putamen nuclei) [24]. Therefore, we considered that the evaluation of the striatum with 1H-MRS may be an important portion of neuroscience, and we decided to investigate the changes of striatal metabolites in this study.

Because imaging of small animals generally requires anesthesia, anesthetic agents can induce unintended effects on animal physiology that may confound the results of imaging studies [8]. The use of pentobarbital and ketamine anesthesia is popular in imaging studies of laboratory animals. Pentobarbital is a short-acting barbiturate that both enhances and mimics the action of the neurotransmitter gamma-aminobutyric acid (GABA), the principal inhibitory neurotransmitter in the central nervous system (CNS) [15]. However, ketamine appears to exert the majority of its CNS actions via its antagonistic effect at N-methyl-D-aspartate (NMDA) receptors [16]. Other evidence suggests that it may have effects at other receptors, such as the glutamate receptor [14]. Ketamine has been termed a “dissociative” anesthetic because patients who receive ketamine alone appear to be in a cataleptic state. The effects of ketamine on the gross electrical activity of the brain are markedly different from those of “depressant” anesthetics, such as pentobarbital [21]. We hypothesized that the differences in anesthetic mechanisms between dissociative and depressant anesthetics are due to different effects on the brain as seen...
on 1H-MRS of the striatum. Therefore, we expect to determine whether the administration of pentobarbital or ketamine has any effect on striatal spectral metabolites in dogs. The selection of voxel-of-interest (VOI) around the striatum with the human 3T MR system has limitation in animals brain size. Thus the dog was chosen due to its advantage of brain size for rather than rodents or other small laboratory animals.

The purpose of this study was to evaluate alterations in striatum metabolites of dogs between anesthetized with pentobarbital and with ketamine in proton magnetic resonance spectroscopy (1H-MRS), and to investigate the appropriateness of anesthetic agents for 1H-MRS study.

MATERIALS AND METHODS

Experimental design: Ten healthy beagle dogs (18 ± 6 months, weight 9.7 ± 0.9 kg) were used without sex discrimination. All dogs were considered to be normal following physical, hemodiagnostic (complete blood count), and blood chemistry examination. Each animal was individually housed according to the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals, under an approved protocol from the Institutional Laboratory Animal Care and Use Committee of Konkuk University. Ten dogs were divided into two groups: 1) P group, N=5; 2) K group, N=5. All animals were premedicated with intramuscular medetomidine (40 μg/kg, DOMITOR®, Pfizer Korea, Ltd.) to maintain anesthesia for 1 hr and to induce skeletal muscle relaxation. After 15 min, 5 beagles were anesthetized with intravenous pentobarbital sodium (8 mg/kg, ENTOBAR®, Hanlim PHARMA Co., Ltd.) (P group). The 5 other beagles were anesthetized with intravenous ketamine HCl (15 mg/kg, KETAMIN 50®, Yuhan Co., Ltd.) (K group). During MR experiments, all animals were taken to stage III plane 3 of anesthesia. It was characterized by decreased intercostal muscle function and tidal volume, increased respiration rate, profound muscle relaxation, diaphragmatic breathing, a weak corneal reflex, and a centered and dilated pupil. There was no need to give additional administration.

Localized 1H-MRS: 1H-MRS measurements were performed in the P group and K group. MR experiments were conducted using a Philips Achieva 3 Tesla System (Philips Healthcare, Best, The Netherlands) with an 8 channel SENSE knee coil. Anesthetized animals were placed in a sternal position. A scout image was initially obtained to verify the position of the subject and the image quality. The position of the volume-of-interest (VOI) was carefully selected based on multislice transverse, coronal, and sagittal T2-weighted MR images obtained using a turbo spin echo (TSE) sequence (TR=4540 ms, TE=80 ms, slice thickness=2.0 mm, NEX=2, matrix size=144 × 128, reconstruction matrix 240 × 240, SENSE factor=2); a rectangular VOI (10 × 20 × 10 mm3) was placed in the striatum. As a single voxel technique, 1H-MRS spectra were obtained through a STEAM sequence performed according to the following parameters: data point 1024, spectra BW=2,000 Hz, TR=2,000 ms, TE=30 ms, NSA=128. The relative metabolite levels for N-acetylaspartate (NAA), glutamine and glutamate complex (Glx), creatine (Cr), choline-containing compounds (Cho), and myoinositol (Ins) were determined.

1H-MRS Data Analysis: In vivo proton spectra were analyzed using LCModel [19, 20], which calculates the best fit to the experimental spectrum as a linear combination of model spectra (simulated spectra of brain metabolites). Raw data (FIDs) were used as standard data input. The water-suppressed time domain data were analyzed between 0.2 ppm and 4.0 ppm without further T1 and T2 correction. The following 17 metabolites were included in the basis set: alanine (Ala), aspartate (Asp), creatine (Cr), γ-aminobutyric acid (GABA), glucose (Glc), glutamate (Glu), glutamine (Gln), glutathione (GSH), glycerophosphorylcholine (GPC), phosphorylcholine (PCho), myo-inositol (mIns), lactate (Lac), N-acetylaspartate (NAA), N-acetylaspartyl-glutamate (NAAG), phosphocreatine (PCr), scyllo-inositol (Scy) and taurine (Tau). In addition, macromolecule was also included in the basis set. The in vivo proton spectra were accepted if the signal-to-noise ratio (SNR) was 6 or more, and the standard deviation of the fit for the metabolite was < 20% (Table 1).

Table 1. The levels of each striatal metabolites in canine brain with 1H-MRS

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>Pentobarbital</th>
<th>Ketamine</th>
<th>CV (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>6.29 ± 0.32</td>
<td>6.89 ± 0.27</td>
<td>6.3</td>
<td>0.009*</td>
</tr>
<tr>
<td>NAA</td>
<td>5.92 ± 0.99</td>
<td>6.29 ± 1.39</td>
<td>8.7</td>
<td>0.041*</td>
</tr>
<tr>
<td>Glx</td>
<td>6.93 ± 0.45</td>
<td>7.52 ± 0.17</td>
<td>17.8</td>
<td>0.003*</td>
</tr>
<tr>
<td>Cho</td>
<td>2.28 ± 0.24</td>
<td>2.58 ± 0.36</td>
<td>6.1</td>
<td>0.157</td>
</tr>
<tr>
<td>Ins</td>
<td>4.62 ± 0.36</td>
<td>4.18 ± 0.88</td>
<td>14.9</td>
<td>0.879</td>
</tr>
</tbody>
</table>

* P<0.05, applying the two-tailed t-test with independent factors.

- Coefficients of variations (standard deviation over mean).
- Arithmetic mean ± standard deviation.
Fig. 1. Typical analysed *in vivo* striatum 1H-MRS spectrum of the canine brain. On the bottom panel the acquired spectrum is shown (without line broadening, hence the more noisy appearance) superimposed with the bold fitted spectrum from LCModel (Version 6.2-1L). Residuals (observed-fitted) are presented in the top panel. (a) The spectra from the canine anesthetized with pentobarbital. (b) The spectra from the canine anesthetized with ketamine.
DISCUSSION

Pentobarbital and ketamine were usually administered for anesthesia with experimental 1H-MRS study. However, there has been no report concerning the effects of these anesthetics in the striatum in 1H-MRS studies. Therefore, it is necessary to consider the careful choice of anesthetic agent in 1H-MRS studies. We acknowledge several limitations in our study. First, the number of subjects was small. Data must be acquired in more subjects to substantiate the preliminary findings of alterations with pentobarbital or ketamine administration, and further, must examine the relationship between dose dependant effects of each drugs on 1H-MRS. Second, we had premedicated the animal with alpha-2 adrenergic agonist (medetomidine) because satisfactory anesthesia could not be maintained with pentobarbital or ketamine administration alone during the 1H-MRS study. In this reason, the ex vivo NMR study to measure the normal range of metabolites without any anesthetic agents or the effect of single anesthetic agents requires future investigation.

CONCLUSION

In summary, imaging of small animals generally requires anesthesia. Sedation is also frequently used for 1H-MRS in children. We have demonstrated that MRS-measured metabolites in specific regions of the brain can be differentially influenced by anesthetic agents. This study showed that the choice of anesthetic is significant in the setting of 1H-MRS. Appropriate anesthetic choice should be pursued in order to exclude the effect of anesthetic agents on the target area.

ACKNOWLEDGMENTS. This study was supported by the Brain Korea 21 Project in 2006 and the Kyung Hee University Research Fund in 2008(KHU-20080611), a grant from the Seoul R and BD Program (10550), the Korea Health 21 R and D Project, Ministry of Health and Welfare, Republic of Korea (02-PJ3-PG6-EV07-0002) (A081057) and a grant (R01–2007–000–20782–0) from the Purpose Basic Research Grant of the KOSEF and the Korea Research
REFERENCES

