Pharmacokinetics of the Gastroprokinetic Agent Mosapride Citrate after Single Oral Administration in Horses

Koichi OKAMURA1,2*, Naoki SASAKI2*, Morito FUKUNAKA3, Haruo YAMADA3 and Hisashi INOKUMA2

1)The United Graduate School of Veterinary Sciences, Gifu University, 1–1 Yanago, Gifu 501–1193 and 2)Department of Clinical Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080–8555, Japan

(Received 23 July 2009/Accepted 17 March 2010/Published online in J-STAGE 12 May 2010)

ABSTRACT. The purpose of this study was to determine the pharmacokinetics and dose proportionality of mosapride citrate, a selective 5-HT4 agonist, after oral administration in horses. Seven healthy Thoroughbreds were dosed with distilled water and 0.5, 1.0, or 1.5 mg/kg mosapride citrate through a nasogastric tube. Serum mosapride concentrations were measured by a liquid chromatography/tandem mass spectrometry (LC/MS/MS) method. Mosapride showed the Cmax of 31, 60, and 104 ng/g and AUCs of 178, 357, and 566 ng·hr/g at doses of 0.5, 1.0, 1.5 mg/kg, respectively. The Cmaxs and AUCs increased in proportion to the dose, indicating linear pharmacokinetics of mosapride up to 1.5 mg/kg. The pharmacokinetic profiles of mosapride in horses are quite different from that in humans. The average t1/2 in horses was almost 2 fold longer than that reported in healthy adult humans. Therefore, it is thought that it is suitable to reduce the number of doses a day in horses compared to humans.

KEY WORDS: equine, gastric emptying rate, mosapride citrate.

Mosapride citrate, a selective 5-HT4 receptor agonist, is a gastroprokinetic agent used clinically in the treatment of human with gastrointestinal motility dysfunctions in Japan [3]. In horses, it has been reported that oral administration of mosapride citrate can promote motility in the small intestine and cecum [4, 9]. However, the pharmacokinetics of mosapride citrate in horses has not been cleared. In order to provide a basis for the clinical use of mosapride citrate in horses, we performed the pharmacokinetic study. In this study, we report mosapride citrate pharmacokinetic data obtained following after single oral dosing.

MATERIALS AND METHODS

Horses: Seven healthy Thoroughbred horses (6 geldings and 1 mare aged 5.6 ± 2.6 years and weighing 485.7 ± 46.9 kg) were used in this study. Horses were housed in individual box stalls, fed an ordinary diet (0.9 kg oats, 0.3 kg bran and 3.5 kg hay) twice daily, and allowed free access to water during the study. Housing and care of the horses and this study were in accordance with the protocol approved by the institutional animal care and use committee of Obihiro University (No. 16–43).

Dosing and experimental design: All animals were fasted for 12 hr before dosing. Horses were dosed with distilled water and 0.5, 1.0, or 1.5 mg/kg mosapride citrate (Gasmo- tin® Dainippon Sumitomo Pharma, Co., Ltd., Osaka, Japan). For dosing, the powder were suspended in 500 ml water and administered by nasogastric tube. An additional 500 ml water was flushed through the tube to ensure complete delivery of the test dose. The study was conducted as a Latin-square design; thus, each horse received each dosage. There was a 1-week washout period between subsequent treatments.

Jugular venous blood was collected just before mosapride administration and at 0.25, 0.5, 1, 2, 3, 6, and 8 hr after dosing. After isolating the serum from the blood samples, the harvested serum samples were stored at –20°C pending mosapride analysis.

Analytical methods: Serum mosapride and M-1 (its metabolite) concentrations were measured by the liquid chromatography/tandem mass spectrometry (LC/MS/MS) method [1]. Mosapride, M-1 (des-p-fluorobenzyl mosapride; (±)-4-amino-5-chloro-2-ethoxy-N-(2-morpholinyl)methyl]benzamide), and I.S. ([±]-4-amino-5-chloro-2-ethoxy-N-[(2-chlorobenzyl)morpholino][methyl]benzamide) for concentrations measurement were obtained from Dainippon Sumitomo Pharmaceutical Co., Ltd. (Osaka, Japan). The quantification limits of mosapride and M-1 were 4 ng/g, and calibrations were linear (r>0.999) from 1 to 200 ng/ml in this study.

The maximum serum concentration (Cmax) and the time to Cmax (tmax) were obtained from individual profile by inspection. The apparent serum elimination half-life (t1/2) was determined as 0.693/Kel, where Kel is the elimination rate constant calculated by the least-squares method using the log-linear portion serum concentration-time curve. The area under the plasma concentration-time curve (AUC) was determined according to the trapezoidal rule, and area to infinity was added as calculated C/Kel, where Ci is the serum concentration at the terminal data point. The mean residence time (MRT) as area under the first moment of serum concentration-time curve/AUC.
RESULTS

Serum concentration-time profiles of unchanged mosapride after single oral administration of 0.5, 1.0, 1.5 mg/kg are shown in Fig. 1, and pharmacokinetic parameters are listed in Table 1. Mean ± SD serum levels of the mosapride reached maximum 1–2 hr after administration, with levels of 29 ± 10, 47 ± 17, and 101 ± 36 ng/g at doses of 0.5, 1.0, and 1.5 mg/kg, respectively (Fig. 1). Thereafter, serum levels of mosapride decreased monoexponentially with t_{1/2}s of 3.6 to 4.2 hr.

Mosapride showed the C_{max}s of 31, 60, and 104 ng/g and AUCs of 178, 357, and 566 ng·hr/g at doses of 0.5, 1.0, and 1.5 mg/kg, respectively (Table 1). These two pharmacokinetic parameters increased in proportion to the dose (Figs. 2, and 3).

M-1 was measured in serum after administration of 0.5,
Mean ± SD concentrations of M-1 peaked 1–3 hr after dosing, with concentrations of 16 ± 5, 27 ± 10, 47 ± 20 ng/g (Fig. 4). The C\text{max}\text{s} were 17, 32, and 53 ng/g and AUCs of 244, 292, and 458 ng·hr/g at doses of 0.5, 1.0, and 1.5 mg/kg, respectively (Table 2). The C\text{max}\text{s} were approximately one-second of those of the unchanged mosapride. T1/2 of M-1 (11.7, 5.6, and 5.2 hr) were slower than those of the unchanged drug.

DISCUSSION

Cisapride and tegaserod have been shown to have prokinetic effects in horses [2, 9]. Their pharmacokinetic information also have been reported [2, 10]. Although mosapride citrate has been reported that has gastroprokinetic effects in horses, pharmacokinetic data is not available. So we performed the pharmacokinetic study of mosapride in horses.

After oral administration to horses, mosapride was rapidly absorbed from gastrointestinal tract, and serum concentrations of unchanged drug peaked 1 hr. In this study, C\text{max} and AUC of mosapride increased in a dose-dependent manner after single administration at doses from 0.5 to 1.5 mg/kg. On the other hand, the t\text{max}, t1/2 and MRT were independent and remained constant on the administered dose. Therefore, these results indicate the linear pharmacokinetics of mosapride under doses of this study.

M-1 was found in horse serum together with the unchanged drug, as similar to experimental animals, dogs, and human [5–7]. Mosapride was shown to receive first-pass effect in experimental animals [5, 6]. The bioavailability (F) value was 0.47 in female rats, 0.14 in monkeys, 0.08 in dogs and 0.07 in male rats. The extent of first-pass effect could be approximately estimated from M-1 to mosapride concentration (C\text{max}) ratio after single oral administration: 0.2 in female rats, 1.1 in monkeys, 1.0 in dogs and 6.3 in male rats [7]. The sequence of these ratio is consistent with those of first-pass effect. In addition, in human subjects, this ratio was 0.2 [7], and in horses, that was 0.5. These results suggest that mosapride undergoes less first-pass effect in horses than dogs, not less than man. So it is reasonable that optimal dosage in horses is much higher than that of man [4, 11]. Meanwhile, orally-administered M-1 enhanced gastric emptying of a semisolid meal and of a resin pellet meal in rats, and the potency was equal to or slightly less than that of the unchanged drug [12]. Therefore, M-1 may contribute in part to the pharmacological effects exerted by mosapride in horses.

The pharmacokinetic profiles of mosapride in horses are quite different from that in humans [7]. The t\text{max} of M-1 increased dose-dependently even though the t\text{max} of unchanged drug was stable against dosage. Therefore, it is thought that it is suitable to reduce the number of doses a day in horses to half. On the other hand, the C\text{max} obtained after single oral administration

Table 2. Mean pharmacokinetic parameters of M-1 calculated following single oral administration of mosapride to horses

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>C\text{max} (ng/g)</th>
<th>t\text{max} (hr)</th>
<th>t1/2 (hr)</th>
<th>AUC\text{0–}\infty (ng·hr/g)</th>
<th>MRT\text{0–}\infty (hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>17 ± 4</td>
<td>1.3 ± 0.7</td>
<td>11.7 ± 4.5</td>
<td>244 ± 90</td>
<td>16.8 ± 6.0</td>
</tr>
<tr>
<td>1.0</td>
<td>32 ± 9</td>
<td>2.4 ± 1.8</td>
<td>5.6 ± 1.7</td>
<td>292 ± 101</td>
<td>9.0 ± 2.0</td>
</tr>
<tr>
<td>1.5</td>
<td>53 ± 22</td>
<td>3.3 ± 2.6</td>
<td>5.2 ± 2.3</td>
<td>458 ± 129</td>
<td>8.5 ± 3.0</td>
</tr>
</tbody>
</table>

Results are expressed as the mean ± SD of 7 subjects.

C\text{max}: peak serum concentration, t\text{max}: time to peak serum concentration, t1/2: apparent serum elimination half-life, AUC\text{0–}\infty: area under the serum concentration-time curve to infinity, MRT: mean residence time.
of 5 mg mosapride in man is equal to that following after single oral dosing of 0.5 mg/kg mosapride in horses [7]. Considering about this, it is reasonable that the administration of 0.5 mg/kg mosapride showed the prokinetic effect on horse gastric emptying rates [4].

The therapeutic dosage regimen of mosapride citrate in man is 5 mg, three times a day. Meanwhile, it has been reported that the optimal orally administered dosage of mosapride citrate in horse cecum is 1.5 to 2 mg/kg [8]. Although further studies are needed to establish the dosage regimen, it seems to be that the predicted therapeutic dosage regimen of mosapride citrate in horse gastric is 0.5 mg/kg, and in horse cecum is 1.5 to 2 mg/kg, once or twice a day.

REFERENCES