Comparison of the Blood Coagulation Profiles of Ferrets and Rats

Saya TAKAHASHI1, Norihiko HIRAI1, Mitsuyuki SHIRAI1, Katsuaki ITO1 and Fumitoshi ASAI1*

1)Department of Pharmacology, School of Veterinary Medicine, Azabu University, 1–17–71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252–5201, Japan

(Received 5 November 2010/Accepted 6 March 2011/Published online in J-STAGE 18 March 2011)

ABSTRACT. The aim of this study was to examine the blood coagulation profiles of ferrets and compare them with those of rats. The ferret activated partial thromboplastin time (aPTT) was slightly longer than the rat aPTT. In contrast, the ferret prothrombin time and thrombin time were profoundly shorter than the corresponding rat values. The fibrinogen level in ferret plasma was 2 times higher than that in rats. Heparin prolonged all blood coagulation times in a concentration-dependent manner in both ferret and rat plasma. A significantly ($P<0.01$) higher concentration of heparin was required to double the aPTT in ferrets than rats. These blood coagulation data for ferrets will be useful in experimental animal studies.

KEY WORDS: blood coagulation, ferret, fibrinogen, heparin, rat.

The ferret has been used as an experimental animal in a wide variety of studies including bacteriology, virology, physiology, toxicology, and pharmacology studies [2]. In particular, the ferret is used as a gold standard animal model of nausea and vomiting [6]. In addition, ferrets have also become a very popular mammalian pet species. In veterinary clinical settings, ferrets are susceptible to a number of diseases that may be associated with hemostatic disorders, including hepatic disease, endocrine disorders, and neoplasia [5, 10, 16]. Determination of the blood coagulation profiles of healthy ferrets would facilitate the detection and monitoring of coagulopathies and drug effects in this species. However, there is limited information available about the blood coagulation values of ferrets [1, 8].

Prothrombin time (PT), activated partial prothrombin time (aPTT), and thrombin time (TT) are the most commonly used clotting time assays in mammals. PT, aPTT, and TT assess the function of the extrinsic pathway, the intrinsic pathway, and the common pathway, respectively [15]. The aim of our study was to examine the blood coagulation profiles of ferrets. We compared the blood coagulation times of ferrets with those of rats, one of the most widely used experimental animals. We also compared the anticoagulant activity of unfractionated heparin (heparin), which is currently the most widely used anticoagulant in experimental and clinical settings, between the two species.

All study protocols were approved by the Animal Research Committee of Azabu University. Ferrets (Mustela putorius furo, 6 females, 1 year of age) and rats (Sprague-Dawley strain, 5 females and 5 males, 10 weeks of age) from Japan SLC Inc. (Shizuoka, Japan) were utilized. The animals were housed in climate controlled rooms under a 12 hr dark and light periods and allowed free access to food and water.

Blood samples were collected from the cranial vena cava of the ferrets after they had been anesthetized with ketamine (20 mg/kg, im, Fujita Pharmaceutical Co., Ltd., Tokyo, Japan) and the abdominal aorta of the rats after they had been anesthetized with pentobarbital (50 mg/kg, ip, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan). The blood samples were collected in a syringe containing 0.129 M sodium citrate at a ratio of 9 parts blood to 1 part anticoagulant. The samples were centrifuged at 2,000 \times g for 15 min, and the platelet poor plasma was immediately separated from the cells and frozen at -80°C until the assays. Plasma coagulation times were determined within 4 weeks of collection. Our previous studies confirmed that plasma clotting times were stable (mean difference, < 5%) at least until 4 weeks after the plasma collection when the plasma was stored at -80°C.

Coagulation assays were performed with citrated plasma obtained from the ferrets and rats using a STart4 analyzer/reagent combination (Diagnostica Stago, France, distributed by Roche Diagnostics KK, Tokyo, Japan) according to the manufacturer’s instructions. PT was measured by mixing plasma (50 μl) that had been preincubated at 37$^\circ$C for 2 min with PT reagent supplemented with calcium (Neoplastin$^\circledR$ Cl plus; 100 μl) at 37$^\circ$C. aPTT was measured by mixing the plasma (50 μl) with reagent 1 (PD$^\circledR$; 50 μl) at 37$^\circ$C for 3 min. Clot formation was initiated by adding 50 μl of 0.025 M CaCl$_2$ solution. TT was measured by diluting plasma (100 μl) with Owren’s diluent buffer (Fibri-Prest$^\circledR$) at a ratio of 1:19, incubating it at 37$^\circ$C for 1 min, and then adding thrombin reagent (STA$^\circledR$-Thrombin; 50 μl, 50 NIH concentration). Fibrinogen was calibrated from the TT assay (i.e., the Clauss method) [3] using 1:10, 1:20, and 1:40 dilutions of control plasma (Coag Control N+N$^\circledR$). All assays were performed in duplicate, and mean values were calculated.

We determined the responses of ferret and rat plasma to heparin (heparin sodium, Mitsubishi Tanabe Pharma Corp., Tokyo, Japan) according to the method of Leblond et al. [7]. Briefly, plasma (80 μl) that had been preincubated with var-
ious concentrations of heparin (20 μl) or saline (control) for 1 min at 37°C was used for the coagulation assays. PT and aPTT were measured as described above. To measure TT, coagulation was induced with the addition of thrombin at a lower concentration (9 NIH units/ml) to determine the anti-thrombin activity of heparin. The anticoagulant activity of heparin was evaluated by determining the concentrations required to double each plasma clotting time (PT2, aPTT2, and TT2).

Data are expressed as the mean ± SD and minimum–maximum values. Statistical analysis was performed using the Student’s t-test. Differences were considered significant at P<0.05.

We obtained the following data (mean ± SD) from the ferrets: prothrombin time (PT): 11.3 ± 0.4 sec, activated partial thromboplastin time (aPTT): 17.0 ± 1.2 sec, thrombin time (TT): 13.7 ± 2.7 sec, and fibrinogen concentration: 486.7 ± 97.9 mg/dl, as shown in Table 1. Compared with the rat values, the ferret aPTT was slightly (P>0.05) longer, and the ferret PT and TT were significantly (P<0.01) shorter. The fibrinogen level in ferret plasma was two times higher than that present in rat plasma (P<0.01, Table 1). No statistically significant difference was found in PT, aPTT, or fibrinogen values between female and male rats.

To determine the anticoagulant activity of heparin, plasma samples from ferrets and rats were preincubated with various concentrations of heparin before clotting was initiated. Heparin prolonged all coagulation times tested in a concentration dependent manner (Fig. 1). The aPTT assay was most sensitive to the effects of heparin, followed by the TT and PT assays in both ferrets and rats. PT2, aPTT2, and TT2 were measured as the heparin concentration required to double each baseline clotting time. As shown in Table 2, the PT2 and TT2 values of ferrets and rats were comparable, but the aPTT2 of the ferrets (0.14 ± 0.01 IU/ml) was slightly but significantly (P<0.01) higher than that of the rats (0.10 ± 0.02 IU/ ml). No statistically significant difference was found in PT2, aPTT2, or TT2 values between female and male rats.

Blood coagulation testing is a common laboratory assay, and a number of different coagulation analyzers are currently commercially available. However, the clotting time assay is known to be sensitive to changes in individual reagents and analyzers [9, 11, 13]. There are two main types of clot detection systems: photo-optical clot detection systems and electro-mechanical clot detection systems. We used an electro-mechanical coagulation analyzer in our study, which measures the clot induced reduction in the movement of a steel ball immersed in a plasma sample and subjected to an alternating electromagnetic field. Thus, our data is unlikely to be affected by variables that affect light transmission, such as hyperbilirubinemia or lipemia. As far as we know, this is the first report about the measurement of ferret blood coagulation times to use an electro-mechanical

Table 1. Plasma clotting times and fibrinogen concentrations of ferrets and rats

<table>
<thead>
<tr>
<th>Species</th>
<th>PT (sec)</th>
<th>aPTT (sec)</th>
<th>TT (sec)</th>
<th>Fibrinogen (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrets</td>
<td>11.3 ± 0.4**</td>
<td>17.0 ± 1.2</td>
<td>13.7 ± 2.7**</td>
<td>486.7 ± 97.9**</td>
</tr>
<tr>
<td></td>
<td>(10.9–12.0)</td>
<td>(15.3–18.7)</td>
<td>(9.4–16.9)</td>
<td>(382.5–658.3)</td>
</tr>
<tr>
<td>Rats</td>
<td>18.3 ± 1.0</td>
<td>15.8 ± 0.5</td>
<td>27.9 ± 4.8</td>
<td>247.3 ± 45.9</td>
</tr>
<tr>
<td></td>
<td>(17.1–20.0)</td>
<td>(15.2–16.7)</td>
<td>(18.8–34.0)</td>
<td>(200.6–346.5)</td>
</tr>
</tbody>
</table>

Results are expressed as the mean ± SD (minimum—maximum) for 6 ferrets (all females) and 10 rats (5 females and 5 males). **, indicates P<0.01 versus rats.

Fig. 1. Effects of heparin on the plasma clotting times (PT, aPTT, and TT) of ferrets (A) and rats (B). Results are expressed as fold values compared with the basal plasma clotting times (PT, aPTT, and TT), and represent the mean ± SD for 6 ferrets (all females) and 10 rats (5 females and 5 males).
required to double the baseline value of aPTT (aPTT 2) in
thus suitable for monitoring the anticoagulant effects of hep-
concept that the aPTT is highly sensitive to heparin, and is
sensitivity order of aPTT>TT>>PT, which is in line with the
study, heparin prolonged all clotting times tested, with a
lant activity of heparin in ferrets and rats. In the present

97.9 mg/d

rets [1, 8]. However, the ferret fibrinogen value (486.7 ±
similar to the previously reported reference values for fer-

system.
The ferret PT and aPTT values found in our study were
similar to the previously reported reference values for fer-
retts [1, 8]. However, the ferret fibrinogen value (486.7 ±
97.9 mg/dl) detected in our study was quite different from
the previously reported value (107.4 ± 19.8 mg/dl) [1]. This
discrepancy might have been due to the different assays
used because the fibrinogen measurement was performed
with the PT-fibrinogen method using a photo-optic analyzer
in the previous report [1] and by the Clauss method with an

Our study provides new data about the in vitro anticoagu-
ulant activity of heparin in ferrets and rats. In the present
study, heparin prolonged all clotting times tested, with a
sensitivity order of aPTT>TT>>PT, which is in line with the
concept that the aPTT is highly sensitive to heparin, and is
thus suitable for monitoring the anticoagulant effects of hepa-
rin in clinical settings [12]. The concentration of heparin
required to double the baseline value of aPTT (aPTT 2) in
ferrets was slightly but significantly (P<0.01) higher than
that in rats (Table 2). A slightly higher dose of heparin may
be required to exert anticoagulant effects in ferrets. The rea-
son why the aPTT 2 values differed significantly between
ferrets and rats is unclear, but one possible explanation is a
difference in the affinity of heparin for antithrombin or the
intrinsic factor tenase complex between the two species.

This study describes the blood coagulation profiles of
female ferrets and compares it with those of rats. These
blood coagulation data for ferrets will be useful in experi-
mental animal studies. In a further study, it should be exam-
ined whether there is a sex difference in the coagulation
profiles of ferrets.

ACKNOWLEDGMENTS. This study was partly supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (No. 20880029) and the Promotion and Mutual Aid Corporation of the Private Schools of Japan.

REFERENCES

1. Benson, K. G., Paul-Murphy, J., Hart, A. P., Keuler, N. S. and
Darien, B. J. 2008. Coagulation values in normal ferrets (Mus-
tela putorius furo) using selected methods and reagents. Vet.

and disease of ferrets. pp. 386–396. In: Laboratory Animal
Medicine (Fox, J. G., Cohen, B. J. and Loew, F. M. eds.),

and Surgery. 2nd ed. (Quesenberry, K. E and Carpenter, J. W.

6. Holmes, A. M., Rudd, J. A., Tattersall, F. D., Aziz, Q. and
Andrews, P. L. 2009. Opportunities for the replacement of ani-
157: 865–880.

7. Leblond, L., Grouix, B., Boudreau, C., Yang, Q., Siddiqui, M.
A. and Winocour, P. 2000. In vitro and in vivo properties of
bicyclic lactam inhibitors: A novel class of low molecular
weight peptidomimetic thrombin inhibitors. Thromb. Res. 100:
195–209.

Hemostasis in Vertebrates (Lewis JH, ed.), Plenum Press,
New York.

bration of thromboplastin international sensitivity indexes.

10. Olson, J. D., Arkin, C. F., Brandt, J. T., Cunningham, M. T.,
American Pathologists Conference XXXI on laboratory moni-
toring of anticoagulant therapy: laboratory monitoring of

11. Quesenberry, K. E. and Roseenthal, K. L. 2003. Endocrine dis-
ee. pp. 79–90. In: Ferrets, Rabbits, and Rodents, Clinical
Medicine and Surgery. 2nd ed. (Quesenberry, K. E, and Car-
penter, J. W. eds.), WB Saunders, Philadelphia PA.

ulant therapy for venous thromboembolism. pp. 1–27. In:
Progress in Hemostasis and Thrombosis, 9th ed. (Coller, B. S.
ed.), WB Saunders, Philadelphia PA.

M. A. 2005. Anticoagulation monitoring part 2: Heparin and
1285.
