Development of an Efficient Genotyping Method to Detect Obese Mutation in the Mouse Leptin Gene for Use in SPF Barrier Facilities

Hiroaki AYABE1), Shogo IKEDA2), Shigeri MARUYAMA3), Seiji SHIOYAMA4), Mayumi KIKUCHI5), Ayako KAWAGUCHI3), Tetsuo YAMADA5) and Takuya IKEDA6)

1)Production Department, Plasma Team, CHARLES RIVER LABORATORIES JAPAN, Inc., 795 Shimofurusawa, Atsugi-shi, Kanagawa 243–0214, Japan
2)Department of Biochemistry, Faculty of Science, Okayama University of Science, 1–1 Ridaicho, Kita-ku, Okayama-shi, Okayama 700–0005, Japan
3)Monitoring Center, CHARLES RIVER LABORATORIES JAPAN, Inc., 4049–3 Nakatsu, Aikawa-machi, Aikou-gun, Kanagawa 243–0303, Japan
4)Tsukuba Breeding Center, CHARLES RIVER LABORATORIES JAPAN, Inc., 955 Kamibayashi, Ibaraki-shi, Ibaraki 315–0138, Japan
5)Hino Breeding Center, CHARLES RIVER LABORATORIES JAPAN, Inc., 735 Shimokomaduki, Hino-cho, Gamou-gun, Shiga 529–1633, Japan
6)Production Department, CHARLES RIVER LABORATORIES JAPAN, Inc., 3–17–6 Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222–0033, Japan

(Received 3 August 2012/Accepted 26 November 2012/Published online in J-STAGE 10 December 2012)

ABSTRACT. We have developed a rapid and efficient genotyping method for detection of the mouse leptin obese mutation (Lepob) using tetra-primer amplification refractory mutation system-polymerase chain reaction (tetra-primer ARMS-PCR). In this method, whole blood collected onto gamma-ray sterilized Flinders Technology Associates (FTA) filter paper is used as PCR template without a DNA purification step. Three genotypes (Lepob/Lepob, Lepob/+ and +/+) differentiated by single-tube PCR and electrophoresis were perfectly consistent with those determined by PCR-restriction fragment length polymorphism (PCR-RFLP). This method can save material costs and operation time, because it does not require restriction enzyme digestion and could be set up in most specific pathogen-free (SPF) barrier facilities.

KEY WORDS: genotyping, mouse Lepob mutation, SPF barrier facility, sterilization of FTA filter paper, tetra-primer ARMS-PCR

Because of their short generation times and high breeding efficiency, rodents are extremely useful for researching disorders [2, 12]. Point mutation-carrying strains, such as mice with an obese mutation in the leptin gene (Lepob) [16] and rats with a fatty mutation in the leptin receptor gene (Leprfa) [13] are included in representative rodent disease models [6]. For authentic research and for maintaining strains, it is important to verify the existence of point mutations.

Tetra-primer amplification refractory mutation system-polymerase chain reaction (tetra-primer ARMS-PCR) employs 2 primer pairs to amplify, respectively, the 2 different alleles of a single nucleotide polymorphism (SNP) in a single PCR [15]. Moreover, the primers can be designed to amplify fragments of differing sizes for each allele [15]. Therefore, tetra-primer ARMS-PCR does not require restriction enzyme digestion and allows genotyping of a point mutation solely by inspection of PCR products with agarose gel electrophoresis. Combining Flinders Technology Associates (FTA) filter paper and appropriate PCR buffer allows for direct PCR amplification of DNA from unpurified blood on FTA filter paper [7]. To use FTA filter paper in our specific pathogen-free (SPF) barrier facility, we have so far used ethylene oxide gas (EOG) sterilization. However, ethylene oxide is a directly acting alkylating agent which is associated with an increase in chromosomal aberrations and sister chromatid exchange [1, 5]. On the other hand, radiation leaves no toxic residues on treated medical items [10]. Here, we describe a rapid and efficient point mutation genotyping of the mouse leptin gene using tetra-primer ARMS-PCR and gamma-ray sterilized FTA filter paper in SPF barrier facilities.

All procedures involving the use of mice were approved by the animal welfare committee of CHARLES RIVER LABORATORIES JAPAN. FTA filter paper (GE Healthcare Japan, Tokyo, Japan) was sterilized with EOG or with gamma-ray irradiation and carried into our in-house vivarium. Future breeders of the SPF B6.Cg-Lepob/J strain (CHARLES RIVER LABORATORIES JAPAN, Yokohama, Japan), housed in the in-house vivarium, were used when weaning age. A small drop of whole blood, exuded by cutting the mice tail within 1 mm in length from the end, was spotted onto FTA filter paper and dried at room temperature. Cutting of mice tail was quickly performed only once with the minimum incision required for blood collection. The FTA filter paper was placed into a zippered product package together with silica gel for storage and shipping. The blood samples, covering about 0.9 mm2 of FTA filter paper, were punched out using a KN-292B ear puncher (1.5-mm diam-
eter; Natsume Seisakusho, Tokyo, Japan), and used as template DNAs for PCR. The punched filter paper was placed directly in 20 µl of PCR mixture. PCR was carried out using a 2720 Thermal Cycler (Life Technologies, Carlsbad, CA, U.S.A.). Genomic DNA was purified with a Get pureDNA kit-Cell, Tissue (Dojindo Laboratories, Kumamoto, Japan) according to the manufacturer’s instructions, and 10 ng of the DNA was added to 20 µl of PCR mixture as the template for the positive control. The mixture for tetra-primer ARMS-PCR contained 1× Ampdirect plus (providing a final concentration of 1.5 mM MgCl2 and 200 µM dNTPs; Shimadzu Corporation, Kyoto, Japan), additional 1.5 mM MgCl2, 0.0175 U/µl BIOTAQ HS DNA polymerase (BIOLINE, London, UK) and four primers designed by our group (0.5 µM Fo-1858-Lep, 0.5 µM Ro-2255-Lep, 0.1 µM Fi-2013-Lep and 0.1 µM Ri-2065-Lep). The sequence and position of the primers are shown in Fig. 1. The cycling conditions for tetra-primer ARMS-PCR began with an initial denaturation at 95°C for 10 min followed by 35 cycles of 95°C for 15 sec, 65°C for 30 sec and elongation at 72°C for 45 sec. After cycling, a final elongation period at 72°C was performed for 2 min. The tetra-primer ARMS-PCR products were electrophoresed on a 4% agarose gel (Reliant 4% NuSieve 3:1 Plus Agarose gels; Lonza, Basel, Switzerland) and stained with ethidium bromide. The PCR-RFLP primers were synthesized according to the Jack- son Laboratory’s genotyping protocol [14]. The PCR cycling conditions for PCR-RFLP began with an initial denaturation at 95°C for 10 min followed by 40 cycles of 94°C for 15 sec, 62°C for 30 sec and 72°C for 45 sec. After cycling, a final elongation period at 72°C was performed for 2 min. Ten µl of PCR products was digested with 10 U of DdeI restriction enzyme (New England Biolabs, Ipswich, MA, U.S.A.) in a total volume of 20 µl at 37°C for 1 hr and then subjected to electrophoresis on a 4% agarose gel.

We designed tetra-primer ARMS-PCR primers for amplification of allele-specific PCR products from wild-type (WT; +) and mutant (Lepob) alleles in addition to an internal control product from both alleles to check the performance of PCR (Fig. 1). The tetra-primer ARMS-PCR method is based on the finding that oligonucleotides with a mismatched 3′ residue will not function as primers in PCR under appropriate conditions using DNA polymerase lacking 3′ to 5′ exonuclease activity [9, 15]. In our tetra-primer ARMS-PCR, a 243-bp PCR product will be specifically amplified from the WT allele by Fi and Ro primers and a 208-bp PCR product from the Lepob mutant allele by Fo and Ri primers (Fig. 2). In addition, a 398-bp PCR product will be amplified from both alleles by Fo and Ro primers as an internal control. The three PCR products differ in length, allowing them to be discriminated by agarose gel electrophoresis.

Three genotypes (Lepob/Lepob, Lepob/+ and +/+ of the Lepob mouse generated after mating heterozygous mice were differentiated with the tetra-primer ARMS-PCR (Fig. 3). As expected, 398-bp and 243-bp PCR products were amplified from +/+ WT mice, 398-bp and 208-bp products from Lepob/ Lepob mice, and 398-bp, 243-bp and 208-bp products from Lepob/+ mice. PCR-RFLP was also performed using the same samples to authenticate the genotypes. The genotypes determined by tetra-primer ARMS-PCR were perfectly consistent with those determined by PCR-RFLP. The PCR products using FTA filter paper as template DNA were efficiently
amplified, as were those using purified genomic DNA as template. Seventy-seven of 290 mice generated after mating heterozygous mice which were genotyped by tetra-primer ARMS-PCR showed obesity. The ratio agrees well with expected ratio of 1:3 (χ^2 test, $P=0.54$). The all mice genotyped as Lep^{ob}/Lepob developed obesity. Some genotyping methods have been reported to detect the mouse Lep^{ob} mutation, which includes PCR-RFLP [4], allele-specific primer-PCR
Unlike these methods, this method does not require restriction enzyme digestion, one reaction for each allele or any special equipment. In fact, this method reduces material costs by 50% as well as operating time by 25% in comparison with PCR-RFLP (Table 1). These results suggest that tetra-primer ARMS-PCR developed in this study is able to accurately distinguish the point mutation site at a low cost. Additionally, the change of primer set could enable genotyping of various point mutations.

FTA filter paper is impregnated with a patented chemical formula that lyses cell membranes and denatures proteins on contact. Nucleic acids are physically entrapped, immobilized and stabilized for storage at room temperature.
filter paper. Additionally, FTA filter paper protects nucleic acids from nucleases, oxidation, UV damage and microbial attack. Here, we performed sterility testing of gamma-ray-sterilized FTA filter paper. *Bacillus pumilus* (ATCC 27142) spore strips (NAMSA, Northwood, OH, U.S.A.) and FTA filter papers were placed in a cardboard box, and were then irradiated with 15, 30 and 45 kGy of gamma-rays using a cobalt-60 source (Japan Irradiation Service, Tokyo, Japan). After irradiation, the spore strips were placed in Trypto-soy buillon broth (Eiken Chemical, Tokyo, Japan) and incubated at 37°C for 2 weeks. No positive growth was observed in spore strips irradiated with 15, 30 and 45 kGy. On the other hand, the non-irradiated positive control indicated positive growth after one day of incubation. These results suggest that irradiation of 15 kGy would be sufficient to sterilize FTA filter paper required in the SPF barrier facility. We also studied the influence of the sterilization method of FTA filter paper on PCR. Unopened FTA filter papers were sterilized with 15, 30 and 45 kGy of gamma-rays and were sprayed with Clidox-S (Pharmacal Research Labs, Naugatuck, CT, U.S.A.). After 8 weeks, blood samples were collected on the FTA filter paper in our research vivarium. FTA filter papers sterilized with EOG were used as the comparative control. The blood samples on FTA filter papers were kept at room temperature for seven days, and used for tetra-primer ARMS-PCR. The genotypes determined using FTA filter papers irradiated with 15, 30 and 45 kGy were completely consistent with those determined using the EOG sterilized filter (Fig. 4). These results suggest that EOG sterilization of FTA filter paper could be replaced by gamma-ray sterilization.

Consequently, the mouse *Lep^{ob}* genotyping method using gamma-ray sterilized FTA filter paper and tetra-primer ARMS-PCR is considered to be a rapid and efficient method for use in an SPF barrier facility. Since this genotyping method does not require any special equipment, it could be set up in most SPF barrier facilities. Additionally, the change of primer set could enable genotyping of various point mutations.

ACKNOWLEDGMENT. We thank Dr. Tsunemichi Hosokawa for his encouragement and advice.

REFERENCES

8. Namee, M., Mori, Y., Yasuda, K., Kadowaki, T., Kanazawa, Y.

